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THE KREIN CONDITION 

FOR COHERENT CONFIGURATIONS 

Don Thompson 



0. Introduction  

In the present exposition we will explore some of the 

fundamental requirements imposed upon the existence of Higman's 

coherent configurations [5] in the general setting, and upon 

Biggs' distance regular graphs [2] as a special case. In 

particular, we will investigate the underlying structure of 

the Krein condition which was introduced by Scott in [9], as 

well as the character structure of the centralizer algebras of 

the configurations. Few of the results are new, although we 

believe that formula (2.9) is an improvement over (2.4) in [5] 

and that formula (3.5) has not appeared explicitly in the 

literature. 

1. Preliminaries  

The foundation for our study lies in Higman's coherent 

configurations. As in Higman [5], let X be a nonempty set 

and 0 a set of nonempty binary relations on X so that 0 

is a subset of the power set P(X 2
) of the cartesian square 

of X. Then we call (X,0) the configuration based on  X 

with 0 as its set of basic relations.  Denote n = 'XI as 

the degree  and r = 101 as the rank  of the configuration. 

(In case X is a G-space, for some group G, and 0 is the 

totality of G orbits in X 2 
we say that (X,O) is afforded  

G and call this situation the group case.) 

If K is a commutative ring we write MatK (X) for the 

K-algebra of all matrices, with respect to matrix multiplica-

tion, with coefficients in K and having rows and columns 



{ 1 if (x,y) E H, 

4)11 (x , Y )  = 

0 otherwise. 
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indexed by X. For (P, P  E MatK (X) denote OP as the usual 

matrix product and cp 0 4) as the Hadamard (pointwise) 

product. 

For H c  X2 , 	will stand for the adjacency matrix  

 of the graph (X,H). Hence (p H  E Mat2 (X) and 

In particular, for a configuration (X,O) denote I x  by 

Ix = {(x,x):x E X}. For f E 0, denote the dual  or transpose  

of f by fu = {(y,x):(x,y) E f}. By an (f,g) path  from x 

to y we will mean a 3-tuple (x 0 ,x1 ,x2 ) E X3  such that 

x0  = x, x2  = y and (x0 ,x1 ) E f, (xl ,x2 ) E g where f, 

g E 0. So, a configuration (X,0) is said to be coherent  if 

(1.2) 	i) 0 is a partition of X 2 , 

ii) f E 0, f fl ix  #(I) implies f C Ix , 

iii) f E 0 implies fu E 0, 

iv) for f, g, h E 0 and (x,y) E h, the 

number afgh of (f,g) paths from x 

to y is independent of the choice of x 

and y. 

We will assume (1.2) to be in force throughout. 
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In our discussion, the submodule r of Matz (X) de-

fined by r = 10 E Matz (X):0If is constant for every f E ol 

is of utmost importance. r-called the adjacency ring of (X,0) - 

is a free abelian group of rank r having B = {0 f :f E 0} as 

basis. Denote ro as F regarded with pointwise operations. 

It is easily checked that for every f, g E 0 we have 

Of0a  = 
hE1 0afghh 

so that the "intersection numbers" a
fgh are 

really the structure constants of r with respect to the basis 

B. We note also that in the group case (X,0) is automatically 

a coherent configuration. 

We call (X,0) homogeneous if the n x n identity 

matrix I is in 0. Most of our discussion will utilize the 

assumption of homogeneity. Keeping this assumption in mind, 

define the subdegree of  of f E 0 by of  = affyi  and the 

order of f E 0 by Ifl = nnf . 

Listed below are some important properties of the 

intersection numbers. 

(1.3) For every f, g, h E 0: 

a) nf  = nf(J 

b) afgh  = agofohy  

c) a 	= ngo 
 fE0 fgh 

d) gE 0
af_h  = of  

e) afght.dhl = afgu = agheo l f l. 
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Also, for later use, we will need the fact that the right 

A 

where p f (g,h) = agfh  for all f, g, h E 0. The ring r is 

especially familiar in the context of distance regular graphs. 

Properties (1.3) can also be thought of as properties 
A 

of the set B = {0f :f E 0}  of r x r matrices which are a 

basis of r. We will in addition make use of the identity 

(1.4) 
	

(4) 	
t 

 ) 	4.4 

where A E Mat (0) is the diagonal matrix given by A(g,h) 

= ghng . 

We now turn to the representation theory of r. In 

doing this let us replace r by the adjacency algebra C = Cr 

over 0 since we will be considering absolutely irreducible 

representations. Higman [5] points out that C is semisimple, 

having the decomposition C = C 1 ED C2 ED ...ED Cm  where 

C. = e.0 and e., i = 1, 	m, are the central primitive 

idempotents of C. Each C i  is isomorphic to a full matrix 

algebra of degree ei , say, over 0 and 

regular representation of r provides an isomorphism (I) —1"-> (1) 

of r onto a subring I, the intersection ring, of Mat
z (0) 

m 0  
(1.5) 	 r = 	e. 

i=1 
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Denote by 	 the inequivalent irreducible characters 

of C where 

( 1.6) 	 • Ci(1) = e i , 	= 6ij ei , 

1 < i, j < m. 

The vector space 0X has the structure of a (left) module over 

Mat
0  (X) according to qx = y (p(y,x)y, 	E Mate (X), x E X, 

yEX 

and we call M = tX the standard module when regarded as a 

module over C. As such, M admits the decomposition 

M = M1 E) 	ED Mm  where Mi  = eiM is a direct sum of, say, 

zi  irreducible isomorphic submodules affording 	i = 1, 

m. Hence, we have 

(1.7) 
m 

n = 	ziei . 
i=1 

If c is the character afforded by M, so that C(c) = tra 

for all a E C, then 

(1.8) c 	zi  ci . 
i=1 

Call C the standard character; m the reduced rank; e l , 	em 
the irreducible degrees; and zl , • • • , zm the corresponding 

multiplicities. Choose notation so that M 1  = (x) c  and 

el  = z i  = 1. Call el  the principal idempotent, 	1  the 

principal character and we have 
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(1.9) 
	

C l 4 f )  = nf' 

The algebra C can be completely reduced, i.e., there exists 

an invertible matrix U E Mat (X), and even a unitary one 

if needed, such that for all (I) E C: 

(1.10) 
	

UU = diag(A 1 (),A 2 (,),  

z 2 

Ain (40, 	Am (0)) 

zm 

where A i , ..., Am  are the inequivalent irreducible representa-

tions of C affording c i , ..., Cm, respectively. 
a We write Aa 4) = (aL(0). Define e. E C; ij 

	

j = 1, ..., ea ; a = 1, 	m by 

a 	- E.. = U1 ad,Uwhere 
13 	13 

aa  = diag(0,0, ..., 0, ... ij 
a 	a 

,p.1 ., P.., 3 
z 2 	 za 

0, ..., 0, ..., 0, ..., 0) 

za+1 	 zm 

and qj  is ea 
x e

a having a 1 in the (j,i) entry, 0 

everywhere else. It is easily verified that {E a :i,j = 1, 	ea , ij 
a = 1, ..., m} is linearly independent and forms a basis for C. 
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Also, 	1{eic4j'  j = 1, 	ea,a = 1, 	m}l = 	e
2 = r. 

a=1 a 

Furthermore, {ea 	= 1, 	ea } is a set of orthogonal 

idempotents for fixed a = 1, 	m. 

Higman [5] goes on to demonstrate that 

(1.12) a 
e.. = z 	a / a  
13 	a  EO 13  g 

). 
g 

where and derives the important Schur Relations 

(1.13) T 	(4) ) 	6 	A 

	

gE0 lj g uv g 	- aViv'ju a 

and Orthogonality Relations 

(1.14) 
e_ 

C cc a C (4) ) = SasgE0 	 za 

Finally, we need to include a few comments concerning commutative 

configurations. We say that the (coherent) configuration 

(X,O) is commutative if the following equivalent conditions 

hold: 

(1.15) a) r is commutative, 

b) C is commutative, 

c) afgh  = agfh  for all f, 

d) r = m, 

e) el  = e 2  = ... = em = 1. 

h E 0, 
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Commutative configurations are necessarily homogeneous. The 

map f fu  is trivial if and only if yb f  = (q) t for all 

f E 0, in which case the configuration is clearly commutative. 

We will call a configuration trivially paired if f = fu  for 

every f E 0. 

An important special class of coherent configurations 

is the class of distance regular graphs of Biggs [21. We 

first need some notation and terminology. In a graph A, 

the number of edges traversed in the shortest path joining 

two vertices u and v is called the distance in A between 

u and v, denoted by 3(u,v). The diameter d of A is 

given by d = max a(u,v) where VA is the set of vertices 
u,vEVA 

of A, and we denote EA as the edge set of A. Denote 

Ai (v) = {u E VA:3(u,v) = 

Now, a distance regular graph A with diameter d is 

a regular connected graph of valency k with the following 

property: 

(1.16) There exist natural numbers b
0 = k, bl , 	 b • d' 

cd , such that for each pair of 

verticies u, v satisfying 3(u,v) = j we have 

i) The number of vertices in(v) that are Aj _ i  

adjacent to u is cj , 1 < j < d, 

ii) The number of vertices in A i1 (v) that are 

adjacenttouisb.
3
,0 < j < d - 1. 

c1  = 1, c 2  , 



(1.18) af ff. 1 3 3 
- b. - c. 	1 < j < d 	1. J 	J 
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Call 1(A) = {k,b l, bd;l,c 2 , ...,•cd} the intersection 

array of A. 

We can visualize a distance regular graph as a 

coherent configuration with the identification X = VA and 

0 = {f 0  = 	 fd} where (x,y) E f i  if and only 

if a(x,y) = i, i = 0, 	d. Clearly 0 partitions X 2 ; 

the only f E 0 such that f (1 Ix 0 is f = I; and f = 

for every f E 0 so that properties i)-iii) of (1.2) hold. 

Biggs [2] proves that the a
fgh satisfy (1.2(iv)), hence every 

distance regular graph constitutes a coherent configuration. 

In fact, a homogeneous, trivially paired (and hence commutative) 

configuration. 

Moreover, the a
fgh may be identified with I(A) via 

(1.17) c. = a 3 	f 	f. 1f 3-1  3; 	
= a 

fl fj+lfj i  
0 < j < d, 

(except for c o  and bd  which are not defined). Furthermore, 

The d + 1 basic adjacency matrices A 0  = 6 	Al = 6 f  ' 0 	• f ' 
0 	 1 

A 	6 	are given by Ad 	fd 

• • • 



(1.19) 

Biggs [2] 

(Ah ) 	= 

simplifies the identity 

1 	if 	a(r,$) 	= h, 

0 	otherwise. 

	

cp f cp, = 	afghci) h hE0 

1 0 

in that 

(1.20) A A. = b. A. 	+ a.A. + C. A 1 1 	1-1 1-1 	1 3. 	1+1 i+1' 

1 < i < d - 1, 

(where = af1 f.f.' 1 < i < d - 1). 
 1 

As was already mentioned the intersection ring r will 

be used later so that in this regard, since r = r, we have a 

similar formula from (1.20) for r, namely 

(1.21) 
A A 

A A. 1 1 = b. 	A. 1-1 1-1 + a.A. 1 1 + c. 	A 1+1 A. 

1 < i < d - 1, where (Ai ) jk 	af f.f  ,1, j, k E {0, ..., d}. 
i 3 k 

Our main goal is to explore conditions on distance 

regular graphs and coherent configurations that must be 

satisfied in order for these systems to exist. 

One class of distance regular graphs that has recently 

come under close scrutiny consists of the generalized polygons 

of Tits [11, 12]. The feasibility of their existence has been 
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determined in many instances by conditions such as those we 

will discuss. 

We begin with one of the essential conditions - that 

of Krein. 

2. The Krein Condition  

Following Higman [5], we use C° to denote the algebra 

C considered with respect to pointwise addition and multiplica-

tion. We will use the set {e x :A = 1, ..., r} where e = e
ij 

ifax =acli (theacit i are assumed to have been listed as 

a1 , a2 , ..., ar in some order) as our C °  basis. We have 

(2.1) 	 ex  = hx 	ax (Tf)q 
fE0 

where za = hX' and we note that h1 ,  '"' hr are positive 

integers since they are multiplicities of irreducible repre-

sentations. We will assume that the following three equivalent 

conditions are in force: 

(2.2) a) Aa (4))* = D a (e) for every (I) E C, 1 < a < m, 

b)

 

aX (cp f ) = aT (qb fu) for every f E 0, 1< < A < r, 

c) e* = e X— '  1 < 	< r, 

where a = (aX ) t , e T = (e A ) t . If, further, we have A = 

then e 	is a projection. To see this note that (2.2) is 
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equivalent to assuming that the complete reduction of C has 

been done by a unitary matrix. Therefore e x  = e ij  has (see 

(1.11)) E A  = U-16 xU where U is unitary. Now 

2 e x  = qcx  = (U-1o xU)*(U-1luU) 

= U*ax*(U-1)*U-IaxU 

= U*0 X*0U 

= U* 0 AU 

-1 
U G

AU 

= 
X 

Therefore, as claimed, c
A
2  
 = E A so that e

A is a projection, 

i.e., an idempotent with eigenvalues 0 and 1. By (2.2c) 

and the assumption A = 1 we also have that e x  is 

Hermitian. If now A = A and p = IT, then by Schur's 

Theorem [8] E X 0 c is a positive semi-definite Hermitian 

matrix with all of its eigenvalues between 0 and 1. 

Higman [5] goes on to prove that the structure constants 

of C° with respect to the basis le x :A = 1, ..., r}, namely 

the caul in EA 0 Eu  = 	c
Apo

e
6' have all of their eigen- 

6=1 

values between 0 and 1. As he shows, all of the eigenvalues 

of 

a (0 )a (0 )a (0 ) 
(2.3) 	c 	=hhy 	 6 f  

416 	A PfE0 2  



13 

lie in the interval 10,1]. Equation (2.3) is Higman's version 

[5] of the Krein condition. 

In the special case where fi x ,
d are all linear 

characters we get the simplified (and more easily applied) 

version of (2.3), namely that 0 < c xmo  < 1, or 

(2.4) 	 0 < 	
A(Of)y(Pf)6(0f) 	1 

1f1 2 	— h h • fE0 	 X p 

Higman [5] demonstrates that the Krein condition (2.4) can be 

used to rule out the existence of certain rank 3 coherent 

configurations. Equation (2.4) also gives an easy proof of 

the well known condition for generalized quadrangles, namely: 

s < t2 , see e.g., Higman [6]. 

Biggs [3] gives a slight generalization of (2.4) in 

that he applies Schur's Theorem [8] to the pointwise product 

of arbitrarily many idempotents e x . His condition is also 

phrased in the context of distance regular graphs and their 

intersection arrays rather than the more general coherent 

configuration setting. The resulting condition is 

(0 f ) 	ci (0 f )...0af ( o f )  
(2.5) 	0< 

I 	
1 

 h
a  ha 

 ...ha fE0 	
l 2 

which says that all of the eigenvalues of e 0 e 0 	o al 	a2 	eaq 
lie in the interval [0,1]. Biggs [3] proceeds to utilize (2.5) 
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to help decide, via computer searches, upon the feasibility 

of certain intersection arrays. 

One of the first references to the Krein condition 

(other than by M. G. Krein himself) was made by L. L. Scott 

[9]. In a later treatment, Scott [10] has used the Krein 

condition, whose form is nearly identical with (2.4), to prove 

a result concerning rank 3 permutation groups. One easy 

application of this result can be made in the case of a rank 

3 coherent configuration with trivial pairing. As Higman [5] 

points out, a primitive rank 3 group of even order affords 

a coherent configuration of this kind. Suppose G is such a 

group, then because the adjacency ring F is the centralizer 

in Mat (X) of the permutation representation of G, see [5], 

we conclude that in the decomposition 0 = 1 + o + p of the 

permutation character of G: o, p are irreducible central-

izer characters. Scott's condition [10] states that 

1 
(2.6) 	 a(1) < —2 p(1)(p(1) + 1), 

i.e., 
z 3 (z 3+1) 	 z2 (z 2+1) 

Z
2  < 
	2 	 2 and symmetrically z 3  < 	 where 

z 2 , z 3  are the multiplicities of characters o and p. In 

this special case it is certainly easier to apply (2.6) than 

(2.4)! In fact, Higman [5] lists a few sets of possible 

values of the parameters for rank 3 trivially paired 
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configurations that fail the Krein condition (2.4) while 

satisfying all of his other conditions. Yet, in every case 

listed it is easily checked that (2.6) fails as well. Hence 

the Krein condition is not only interesting in its own right 

but also gives rise to easier necessary conditions on the 

existence of our combinatorial systems. 

M. G. Krein [7] discusses the condition in the set-

ting of convex analysis, where he identifies our idempotents 

eA with the so called zonal kernels of the convex cone of 

all invariant Hermitian positive semi-definite kernels in C. 

These zonal kernels constitute the boundary points or vertices 

of a convex hull within that convex cone. 

Hence the Krein condition is really a statement about 

the size of the convex coefficients used to express an arbi-

trary element of the convex hull in terms of the vertices. 

When seen in this frame of reference we can not only gain a 

deeper appreciation for the reason behind Krein's condition 

but also, by virtue of the convex analysis involved, have a 

geometrical realization of the algebras C and C°. We 

therefore present a new interpretation of the Krein condition 

which yields, in addition to the satisfying geometric picture, 

a tighter bound on the structure constants c 416 . 

We will assume for simplicity that the adjacency 

algebra C is commutative (and therefore homogeneous), hence 

all of its irreducible representations are linear. 
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Define A = 	E C:* is normed, positive semi- 

definite, Hermitian}, where "normed" means *(x,x) = 1 for 

every x E X, i.e., each matrix in A is of the form I + 

for some * E C. 

Lemma 2.7; A is convex. 

Proof. If * 1 , * 2  E A, A E [0,1] and * = X* 1 

 + (1 - X)*2  then we must demonstrate that * E A. Now 

1P(x,x) 	(ail  + (1 - ))4) 2 ) (x , x) 

= Acyx, x) + ( — X)4) 2 (x,x) = A + 	- 	= 1 

for every x E X so that i  is normed. 

Also, since *t.  = * i , i = 1, 2, then ** = 

follows immediately. 

If p is an eigenvalue of i  then p = Aa l  + (1 - A)a2 

 where ai  is an eigenvalue of * i , i = 1, 2, since C is 

commutative. Therefore al' a 2 0 implies p > 0 giving 

us that ip  is positive semi-definite. Hence i  E A and A 

is convex. 	 o 

Let us assume throughout that A = T, A = 1, 	r, 

and that (following Higman [5]) we can completely reduce C 

by a unitary matrix, i.e., that q = 	= e x , A = 1, 	r. 
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The eA  are also positive semi-definite since their only 

eigenvalues are 0, 1. 

We now wish to have the
A belong to A. In order 

to accomplish this, they must be normed. Now 

ti 

= h 	(4) f )q) f  ex 	A 	A fE0 

(see (2.1)) and for every x E X: 

cOxfx) 	hxx ()I(x,x) - 11AX(I) 	
hAe 	hA 

III 	-  	n 

(C being commutative implies e x  = 1 for every A). 

Hence, as they stand, the c x  do not belong to A. 

So let us define the normed elements E x , A = 1, 	r, 

by E x  = FilLe x  = n 
 fE  y 0 x

(Tf )(1) f , and we now have 

{E x :A = 1, ..., r} c A. 

Theorem 2.8.  The set {E x :A = 1, ..., r} is the 

set of vertices for the convex hull A. 

Proof.  First we show that each E is a vertex. 

Suppose there exist (1), 	E A such that E p  = A(1) + (1 - A) 

with A E (0,1) and p E {1, 	r}. We wish to show that 

this is possible only if E p  = 	= (1). 
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Since {E 	= 1, ..., r} is a basis for C then 

{C :p = 1, ..., r} is also a basis for C. Therefore, for 
r 

some ap , by E T, p = 1, 	r, we have 4 = y a E r, 	and 
r 	 p=1 P  " 

= 	b,C or 
p=1 " P  

r 	 r 
C = X 	a C + (1 - A) 	b C 

P=1 P P 	 p=1 P P  

= 	(Aa + (1 - A)13 )C . 
p=1 	P 	 P P 

But, the C p , p = 1, 	r, are linearly independent so 

that Aa + (1 - X)b = 1 and 

Xa + (1 - A)b = 0 

for every p # p. 

Now, in the ath irreducible representation of C 

we have 	c4 (8) 	Xe  is an eigenvalue of 8 for 8 E C, so 

r 
Ca 4)= i 

p aP
C ( P 
	p
)=  y

1
a
P 

n C (c p  ) =1 a 	= 	hp a  

r =a  n 6 e  

pil P hp aP a  

_ 
aan 

ha 

(by (1.6)) 
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Hence, necessarily, the a --, a = 1, 	r, are all a ha 

eigenvalues of (I) and similarly the ba h ' a = 1, 	r, 
a  

are all eigenvalues of II). Thus, since (I) and (1) are 

positive semi-definite, we have a a , ba  > 0, a = 1, 	r. 

Consider Xa + (1 - X)b = 0, p 	p. We cannot have 

both a , b > 0 for we would then have 0 > 0 since 

A E (0,1). So suppose a = 0, then necessarily b = 0, i.e., 

(I) = a
11 
 E , 

11 
it) = b

11 
 E . 
 11 

Now, (0 and II) are both normed hence a p  = bp  = 1 which 

implies that (I) = = E p  as desired. Thus E p  is a vertex 

of A, p = 1, 	r. In the other direction we wish to 

show that any y E A is a convex combination of the , 

p = 1, 	r which will finish the proof. 

Suppose y E A. Since A c C then y admits the 
r 

decomposition y = 1cC 	for some c E0, P= 1, 	r. 
p1 P P  

So we must verify that cu  > 0, p = 1, 	r, and 
r 
1 c = 1. Since y E A then y is normed and so are the 

p=1 P  

E , p = 1, 	r, so we get 	c = 1. By employing the 
p=1 

same eigenvalue argument as above, we may also conclude that 

cu  > 0 for every p. Hence, y is expressible as a convex 

combination of the E p , p = 1, r, and the proof is 

complete. 	 ❑ 
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It is worth observing that under the Hadamard product 

°, A is a monoid: 

1) Associativity is obvious, 

2) Closure - by Schur's Theorem [8] Ey  0 E x  is Hermitian 

positive semi-definite. It is also clear that E 0 E
X 

is normed, 

3) Identity- 

(4) u) 	 nfU 

	

r 	f  

	

E l = n L 	If' 
	

(Pc_ n I 	1,1(1) f fE0 	I - I 	fE0 I -1 

 nn 

= 	Tli(P f fE0 

(by (1.9)) 

(by 1.3(a))) 

= y (p f  = j 
fE0 

the all "1" matrix, which is the identity under 0  

We can now move toward the Krein condition, and here 

the motivation for the bounds arises from the restriction 

that convex coefficients must lie in the interval [0,1]. 

Consider E o  E Since A is a monoid then E p oE EA P .  
r 

and by Theorem 2.8 we have E 	E = 	c' E where 
P 	6=1 146 6  

r 

6 1
c' 	= 1, C' 	> 0, 6 = 1, 	r. In the spirit of PP6 	PP6 — = 

Krein, then 0 < c'PAO < 1, 6 = 1, 	r. Now  — 
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n2  - 	(e 	e ) = 	 = 	c' 	11-e p 	p 	hphp  P 	P 	6=1  PP6 6 	6=1  pp6 h6  ES 

or 

h h 
0 	= 

6=1
c 
 146  h6n `6 = 

eo E  

6=1 11" 6  

so that 

hn 
c - -c ppo' pp6 	h h 

P P 

But from (2.3) we have 

	

cups 
	Cu  (4) 

	

PP6 	6 fE0 

c (4) f )c o  (P fy) 

1f 1 2  

where we have used 	S(c1)f) = 	) = (5 (4) f0), the last 

equality coming from the linearity of all the irreducible 

representations. Hence the new Krein condition which follows 

from 0 < c'PP6 < 1 by convexity is 

(2.9) 

	

0  < v 	Cp((q)Cp(4)f)6(4)fy) 	1 
- L 	  

	

fE0 	If12 	
nh 6'  

which is valid for all p, p, 6 E {1, ..., r}. By following 

the same procedure with the convex coefficients of 

ca 0 
 ca 
 0 

• 

0 E a 	we can also generalize (2.5), getting 
l 	2 
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(cyC a  (q)...C a  (q)C a (q0) 
(2.9') 0< 	1 	2 	q 	1  

fE0 	 f q 	 — q-1 • n h 

The added strength of this new version (2.9) is best realized 

when we have trivial pairing, such as in a distance regular 

graph, in which case h6 may be replaced by max(h 
P 
 ,h 

 P 
 ,h

6 
 ) 

to yield the strongest right hand bound. In this case the 

right hand bound of (2.4) can also become (max(h p ,h p ,h 6 )) -2 

 for its tightest form. Still, (2.9) is better since always 

n > h ó , 6 = 1, 	r. 

Because our picture is phrased in terms of the convex 

monoid A we get the bonus of a geometric interpretation of 

A. Let II be the convex hull spanned by 0 and {le } as 
ij  

itsvertices,whereby{le.1  } we mean all sums of the form , 

ei  + ei  + 	+ ei  ; i1 , i2, "of ih  E {1, 	r}. 
1 	2 

Therefore, it is easily checked that II consists only of 

Hermitian positive semi-definite matrices in C with eigen-

values lying in [0,1]. 

Let 0 be the convex cone spanned by all positive 

multiples of the vertices of H. Again, it is clear that Q 

consists only of Hermitian positive semi-definite matrices 

in C. 

In the case of r = 3 we can visualize the total 

scheme via Figure 2.10 below. 
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Figure 2.10. 

Note that I = e l + c 2 + 6 3 is a vertex of the paral-

lelepiped II and obviously I E A. In fact, we can show that 

in general nnA. I. To see this suppose (pE1111A and 

also that (I) is not a vertex of H. Since 4) E II then we 

have the decomposition (I) = A o  • 0 + X i e l  + 	+ Xrer  where 

h1 X. > 0, i = 0, 1, ..., r, and 	1 X. = 1. So (I)  = X1 nl i=0 1  

+ 	+ A - -E 	and since cp is normed then 1 = A h 1 

h 
r n r' 	 1 

+ 	+ Ar n 
r 	g — givin us n = A 1h1 + 	+ A r  hr  . Suppose 

first that A 1' ..., A r > 0 and therefore A, 	Ar < 1,  

then n = A 1h1 
+ 	+ r  hr  < h1 + 	+ hr = n, a contradiction 



1 
	

2 

0 1 0 

0 0 1 

0 0 0 

1 0 0, 

= 2, of 	= 2 
 1. 

'fo = 1 ' 	 ( f 3. = 

0 1 0 1 

1 0 1 0 

0 1 0 1 

1 0 1 0 

'f2 

   

Using (1.3(d)) we easily compute o f  = 1, 
0 
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We must then have A i , ..., Ak  > 0 for some k E {1, 	r - 1} 

and Ak+1 , 	Ar  = 0 (after suitable renumbering) so that 

Al, ..., Ak  < 1. We then have n = A lh, + 	+ Xkhk < h 1 
+ 	+ hk < n, another contradiction. 

Hence 41 must be a vertex of II and clearly the 

only vertex of II that lies in A is 4 = I, showing that 

HOA=I as claimed. 

Perhaps it is time for a simple example. Consider the 

distance regular graph consisting of the squa),„! 

4 
	

3 

which we will treat as a coherLnt configuration 

with X being the square's vertices. The b.ic relations 0 

are f 0 : Identity, fl : adjacency, f2 : 11, adjacency. 

Here n = 4, r = 3 and we have a trivially ired, commutative, 

homogeneous configuration. The basic adjacc )2 matrices are 

The character table for the 3 absolutely ilL(_( ucible inequivalent 
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representations of C is also easily computed, where we use 

the fact that 	j. ((p f ) is an eigenvalue of cp f  for all 

f E 0, i = 1, 2, 3. We get 

From (1.14) 

C 3 . 

we also get 

(13f 0 (Pf l (Pf 2 

z 1  = 2. 

1 

1 

1 

z 0  = 

2 

0 

-2 

z 2  = 

1 

-1 

1 

1, 

The vertices of / are seen to be 

E l = j ' E 2 = 	- 4) f 2 ' E 3 = I  - (1) f 1 	(Pf2 ' 

To get a geometric feel for this configuration, think of I, 

qb f , (p f 	as "unit vectors" in 3-space and let the "vectors" 
1 	

2  

E l , E 2 , E 3  be written as 

E l  = (1,1,1), 	E 2  = (1,0, - 1), 	E3  = (1,-1,1) 

in terms of the "unit vectors". Note that under pointwise 

multiplication these three "vectors" in fact form a monoid. 

In this light we get another visualization of 0 below. 
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Figure 2.11. 

 

(The author has also investigated the creation of other convex 

hulls similar to A where instead of requiring cp(x,x) = 1 we 

require cp(x,y) = 1 for all (x,y) E f, some f E 0, f 	I. 

It turns out that the strongest Krein condition still comes 

from A rather than from a convex hull created by "norming" 

on (j) f , f 	I. Hence, we will not consider those cases.) 

We must mention that the tightening of the right end-

point bound in our new version of Krein's condition does not 

really accomplish very much. What we mean is that when the 

feasibility of a configuration or intersection array is under 



27 

consideration and the Krein condition is being used, we only 

need to check the left hand bound. After all, if some 

cu ps 	the right bound (i.e., c'p6 > 1) then since 11 10 6 	 p 
r 

1 S c' 
	1 there must be some cu ps , that is negative to 

= 1 " 

compensate. Hence, in applying Krein's condition it suffices 

to check the nonnegativity of the appropriate parameters to 

decide whether the system in question is feasible. But despite 

the fact that we have tightened the bound to no avail we now 

know why the condition comes about, via convex analysis, and 

we have a nice picture of the situation. In addition we can 

now really state the most useful Krein condition as 

(2.12) 
0  < 7  y4f ) r) (40 6 (4)e)) 

fE0 	I f I
2 	 

since, in application, there is no need for the right hand 

restriction. (The above form is also the way that Scott [10] 

states his Krein condition.) 

3. Characters in the Centralizer Algebra  V(C) 

We will develop here a necessary condition on the 

characters of C and of its centralizer algebra V(C). Let 

V = V(C) be the centralizer algebra of C, 

V= {4) E Mate:44 = 44) for all 4) E Cl. 
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If x i , ..., xm  are the inequivalent absolutely irreducible 

characters of V then x 1 (1) = zi , i = 1, 	m. V is 

semisimple and the central primitive idempotents e l , 	
£m 

z. 
of C coincide with those of V. In addition xi  (11,) = ei  

for all ip  E V fl C, i = 1, 	m. 

As Higman points out [5], every matrix A E C can be 

brought to the form 

(3.1)  A = diag (Ai  0 I 

	

zixzi 	 ire",A 
XZ

2 	
m e I z mxz m 

whereAi =ba (A),i=1„,m,isalle i xe.matrix . 

Consequently, in order for a matrix B to commute with all 

such A (i.e., to have B E V) it is necessary and sufficient 

that B can be put into the form: 

(3.2) 	B = 	 xe  0 Bi 	xe 	B2 , . ,Ie xe  ®Bm), 
2 2 	 m m 

where. Bi  is an arbitrary zi  x  z i  matrix over e 

i = 1, 	m. Combining (3.1) and (3.2) yields 

(3.3) 	 BA = diag (A1 0 Bi ,A2  0 B2 , . ,Am  0 Bm), 

so that 
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tr(BA)=Itr(Aj OB.)=Itr.)tr(B.) = 	c.(A)x.(B). 
i=1 	 i=1 	 i=1  

Now, let Pg  E V be a permutation matrix and consider 

m 
(3.4) 	 tr(Pg(i)f) = I Ci4f)Xi(Pg) 

i=1 

for some f E 0. If we multiply both sides of (3.4) by yT f ) 

and sum over all f E 0 we get: 

m 
tr( 13,4)0Ciaf) 	/ 	I i._((i0 f )Xi(1),)Ci(Tf ) 

f0 	 fE0 i=1 - 

• 
m 

= I x i (Prd / WyCj af ) 
i=1 	fE0 

m 	ei  
= 2. xi(Pg)(Sii 

i=1 	Zi 

e. 
= xj( 1) (3 ) --i . . 

3 

(by (1.14)) 

Hence we have the new found necessary condition on the 

characters of C and V: 

(3.5)
z4  

Xi (Pg) = e I tr (P 
fE0 	g

(I) 
f j 

( f ) 

	
= 1, 	m. 

(The motivation for (3.5) is due to an idea by C. W. Curtis 

in an article yet to appear.) Notice that P(I) f is a matrix 
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whose entries are 0 or 1, and we get a 1 on the diagonal 

of Pg4 f every time Pg  sends some k to some £ where 

(k,,e) E f. Therefore tr(P g(1) f ) is the number of pairs (k, .Z) 

such that P :k 	£ and (k,t) E f. 

In the group case, if we take P
g 
 to be the permuta-

tion matrix of X afforded by g E G then P g  E V, since r 

is the centralizer in Mat X of the permutation representation 

of G. Hence, for this situation, 

tr(Pgf) = 'ix E X:(x,xg) E  f}I. 

Also, in this case, x j (Pg ) E Z for all g E G, j = 1, 	m, 

since xj  is then a permutation character. 

One interesting result due to Benson [1] which can also 

be derived via (3.5) arises, from the investigation of the 

configuration (and distance regular graph) consisting of the 

proper generalized quadrangle based on X as the vertices. 

Here n = (s + 1)(1 + st), r = 3, and the configuration is 

trivially paired having character table 

(1) f  =I 	 (Pf 
0 	Ll 	2  

1 	s(t + 1) s
2 t 

 

1 	-1-t 2 

 

1 	s - 1 	-s 
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where the basic relations comprising 0 are the Identity f 0 , 
0 

collinearity f l , and noncollinearity f2 . We have z 0  = 1, 

s 2 (l+st) 	st(l+t)(1+s)  z 1 - 	 - s+t , z 2  

	

s+t 	(which are integers) 

e0  = el  = e2  = 1. Benson [1] shows that in the group case 

(t+1)F+L-(1+s)(1+t)  must be an integer, where F is the s+t 

number of vertices fixed by a group element g, and L is 

the number of vertices x E X such that (x,xg) E f l . 

An alternative way of arriving at this result comes 

from (3.5). In fact F = tr(P I), L = tr(P 	), n - F - L g f 1  

= tr(Pg (1) f ) and we have 
2 

 

	

st(l+t)(1+s) F 	L(s-1) 	(n-F-L) (-s)  
X3(Pg) 	s+t 	[ + 

	

n 	ns(t+1) ns 2t 

or 

(3.6)  
X3 (Pg) = s+t (F(t + 1) + L - (t + 1) (s + 1)). 

In the group case, X 3 (Pg) E Z so that (3.6) is Benson's 

result [1] obtained from the general context of the centralizer 

algebra V. 

We conclude this exposition with another application 

of (3.5). Our example concerns itself with the distance 

regular graph (coherent configuration) based on a proper 
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generalized hexagon. Here we take X to be the set of 

vertices of the hexagon and the four basic relations making 

up 0 are 

f 0  = I, Identity; 

f1, collinearity; 

f2, noncollinear but lying on intersecting lines; 

f3, noncollinear and lying on nonintersecting lines. 

We have n = (s + 1)(1 + st + s 2 t2 ), r = 4. The configuration 

is trivially paired so we wish, in order to employ (3.5), to 

determine the four linear irreducible representations of C. 

Hence we must determine all the eigenvalues of (p f 	i = 0, 1, 

2, 3. From Feit and Higman [4] we learn that 

z = 1, 	
(s+1)(t+l)st(l+st+s 2t2 ) 	and 

s2+st+t2 	2 0 	' z - 1 	 z -  2(1-Va4st)(s+t+igE) 

(s+1)(t+l)st(l+st+s 2t2 )  z 3 - 

where st is a square. By making use of (1.3), (1.7), and 

(1.14) we can deduce via counting arguments that 

n
I 
 = 1 ,  = s(t + 1), = s2 t(t + 1), and of = s 3 t2 

3 

 

In order to determine the eigenvalues of each (4 it is 
j- i 

easier to examine the intersection matrices (P f  which are 
i 

2 (l+rs-t4st) (s+t- 
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4 x 4 matrices. Since C ti  C, see [2] and [5],then the 
A 

eigenvalues of a (P f  are precisely those of cp f  for each i   

i = 0, 1, 2, 3. 
A 

We already know (P f  = I 4x4 . We can calculate (p f  
0 	 1 

via (1.3) and (1.4), getting 

1 	0 	0 

	

(Pf = S(t 	1) 	S '-' 1 1 	0 
1 

st 	s -1 t+ 1 

0 	st 	(s - 1) (t + 1) 

To calculate (P f  we employ (1.21) which tells us that ci;! 

	

2 	 Ll 
A 

= of 	I + of f f  (P f  + ' ' 
f  (O f 	or, since of 	= s(t + 1), 1f I 1111 	11 2 2 	 '1'1 

of f f = s - 1, and of = 1, we get 
1 1 

0 	 0 	 1 	 0 

0 	 st 	s - 1 
	

t + 1 

s 2t(t + 1) st(s - 1) s(t2 + t - 1) 	- 1) (t + 1) 2  

0 	 s2t2 st(s - 1) (t + 1) 	(t+i) (s 2  t+t-st-s). • 

0 

0 

0 

4) f 
2 

Finally, via (1.3), (1.4) and (1.15) we conclude that 
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of 
3 

o 	0 	 0 	 1 

0 	0 	 st 	 (s-1) (t+1) 

0 	s2t2 st(s-1)(t+1) 	(t+1)(s 2t+t-st-s) 

, 2 	 3 2 2 2 2 s 3 t2 s 3 t2- s 2t2 	stks t-st-s+t) st-st-t+st 2 2 . -st+st , 

We compute the respective eigenvalues and deduce that the 

character table for this configuration is 

3 

4 

All of the information 

we have: 

I 4x4 	(1) f 	 (i) f 
1 	 2 

(Pf f
3 

1 	s(t + 1) 	s2t(t + 1)) 

1 	-t - 1 	t(t + 1) 

s 3t2 

-t2 

- s 	-sue 

- s 	strit 

is present and 

1 	s - 1 + 	rs-t- (s - 1) 

1 	s - 1 - 	 - 1) 

needed to record (3.5) 

1   
(3.7) 	X2 (1)g)= 

s
2
+st+t

2(T1(s
2  - s + 1) - T 2 (s - 1) 

T 3 
- (1 + st + s 	) 

1  
X3(Pg) 	

21/i7E(s+t+igE)
(T 1 (t + 1) (1 + st) + T 3 

+ 1
2 	

+ t + 	- (s + 1) (t + 1) (1 + st + 	) ) 
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1  

	

X 4 (Pg ) 	
2iTt-(s+t-Vit 4- 

(T i (t + 1)(i-sT - 1) - T
2
(1 +'t - igT) 

- T
3 

+ (s + 1) (t + 1) (1 + st - /TC)) 

wherewehavewrittenT.for tr(Pg(I) f ), i = 1, 2, 3, 4. 

Also, we have suppressed the formula involving x l , namely 

4  

	

that xi (Pg ) = 	T i  = 1 .  (since x i  is the unit character), 
" i=1 

and have used this latter equation to eliminate T 4  from the 

equations of (3.7). 

The point here, again, is that we have found a necessary 

condition on the parameters of a generalized hexagon. In the 

case where we assume, or know, that a group of collineations 

is acting on the hexagon, we can best use (3.7) in the sense 

that each xi  must be an integer. In this case, we may be 

able to say more about the sizes of the T i  and xi  so that 

more restrictions on s and t are imposed. 
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