EIGENGRAPHS: CONSTRUCTING STRONGLY REGULAR GRAPHS WITH BLOCK DESIGNS

Donald M. Thompson
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ABSTRACT. We define an eigengraph of a regular graph A as a subgraph
for which © and A\Q are both regular. It will be shown that Q

is closely related to an eigenvector for the adjacency matrix of A.

The existence of a particular type of eigengraph in a strongly regular
graph G imposes the structure of a balanced incomplete block design

in G by means of a partition of the vertices of G into objects and

blocks. We investigate the combinatorial and spectral implications

for strongly regular graphs that possess this design structure, graphs
which we call design constructible.

We give new constructions of some known strongly regular graphs
by means of the design approach and in the process are able to deter-

mine some interesting subgraph structure for these graphs. We obtain

MATHE MATICA results on the spectral properties of eigengraphs as well as combina-
torial properties that they induce in the underlying graphs.
A particularly interesting design construction is given for a
strongly regular graph on twenty-six vertices. The construction technique
enablesus to view the graph in terms of the faces and vertices of a

regular dodecahedron as well as determine the automorphism group of the

graph.

1. Definitions and Notation.

Definition 1.1. A strongly regular graph G, denoted G = G(m,r,c,A),

is a regular graph of diameter 2 which is not complete or null, for which
n is the number of vertices, r is the valence, c¢ is the number of
triangles on each edge, and A 1is the number of paths of length 2 between

any nonadjacent pair of vertices.

The facts mentioned in this section may be found in Hestenes and
Higman (1971) or Cameron and Van Lint (1975). Simple counting arguments
yield

(1.2) n=1+r+r(r-c-1)/x.

We will write A for the adjacency matrix of G, having its rows and

columns indexed by V(G), the vertex set of G, so that
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i IfF w =~ 9.
1.3) A s ’ :
(1. i = l

0 otherwise.
Clearly
(1.4) A =JA=1J,

B
i
where J is the all 1 matrix. Moredver,

(1.5) & s 1)1 # e = x)%-+ AT .

For any matrix M having distinct éigenvalues pl >p >...>pIll with

R 2
respective multiplicities zl, ZyseeesZ s we will write
m

spec(M) = s o

for the spectrum of M. In particular, it was shown in Hestenes and Higman
(1971) that

r ‘)2 03
(1.6) spec(A) = s
zl =1 z2 z3
where
Py
1.7) . -%(c-ltv(l—c)z*'ﬁ'(!“l))
3
and where
Iz . 03(11—1) +r
(1.8) 5 °37%2

t23=n—zz-—l.

If G = G(n,r,c,)) is strongly regular then so is its complement
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G'=6G6"(n'",r",c',2"'), (which is possibly disconnected), the graph

whose adjacency matrix is J - A - I. We have

o
[}

n,

n-r-1,
c'=r'-r+21-1,

A'=r'-r+c+1.
For any graph G and w € V(G), the vertex set of G, we will write

I‘G(w) ={ueV(G) :u~wl,
(1.9)

AG(w) ={ue V() : utw,u#wl
In conjunction with the structure of strongly regular graphs we

will employ the idea of another incidence structure - a block design.

Definition 1.10. A block design D = D(v,b,r,k,\) is an arrangement of
v distinct objects into b sets of equal size k called blocks in such
a way that each object appears in r blocks, and every pair of distinct

objects appears together in A blocks.
The well known ‘equations

bk = vr,
(1.11)
A(v-1) = r(k - 1),
may be found in Hall (1967). A complete block design is formed by taking
all subsets of size k from a set of size v to form b = (;) blocks.
We will denote the complete block design by Kz, having parameters

V. v-1 =2
(v, (k)’ (k—l)’ k, (k—z))'
Objects in a block design D will be denoted {01,...,ov} or,
when convenient, simply {1,2,...,v}. Blocks will be written as
B = (01,02',...,0 ) and we will alternately view B as a set, for inter-

section purposes, or as a vertex, for graph purposes. The object-block

incidence matrix B of D is that v x b matrix for which

: {1 if o, e Bj 5
13ij =
0 otherwise .

Hence, since (BBT)j_j counts the number of blocks containing 61 and °j,

we have
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€1.12) BB" = (r - M)I + AJ ,
and
T rk r-2A
(1:13) spec(BB ) = .
1 v-1

i

Since Fisher's inequality (see Hall (19%7)) says
§

(1.14) b2v, (r 2 k)
then %
T‘ rk r—é 0
(1.15) spec(B'B) = %
1 v-1 b-v

We may interpret (BTB)ij as the number of objects common to blocks
Bi and Bj. From Definition 1.10 and this remark we see that

Bly

=kJ,
(1.16) BJ = rJ,
T T
(B'B)J = J(B'B) = rkJ ,

for choices of J of appropriate sizes. Hence, by (1.12),

(1.17) @"8)2 = e-0)8TB + K27 .

PG(n,q) will denote the projective‘geometry of dimension n over
GF(q). This geometry méy be viewed as a Block design where the geometry's
points serve as objects and the geometry's lines serve as blocks (see
Hall (1967)).

In order to combine block designs with graphs we need the next
definition.

Definition 1.18. An independent set in a graph is a set of hutually

nonadjacent vertices.

2. Design Constructibility.

Definitiorn 2.1. Call a strongly regular graph G = G(n,r,c,\) design
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constructible (d.c.)if the vertices of G can be partitioned into two

sets V and B such that
(i) V 1is an independent set,

(ii) l{oi €V e, = B}| is independent of the choice of B € B.

Definition 2.2. Call a set V of vertices which satisfies Definition

2.1 (i) and (ii) an object set.

THEOREM 2.3. Let G = G(n,r,c,)) be a design constructible strongly
regular graph. Then

(7) V and B form a block design D;

(ii) the parameters of D are given by v = r(-p; - /A + 1,
b=n-v, =71, k=-ps, A =1 Here p, is the unique negative eigenvalue
of the adjacency matrix of G.

Proof. Write V = {01,02,...,ov}, B = {Bl,...,Bb}, where

v = |V|, b=n-v= |B| V is an object set, and we shall call the
vertices in B blocks. Define the following incidence relation on

Vu B: 0 € Bj if and only if o, ~ Bj in G. By definition o + 0y
for all i, j. Thus FG(oi) c B, 1<1i<v, so that each object is con-
tained in (is adjacent to) r blocks. Since Definition 2.1(ii) is in
force, each block contains k = |{oi € V:oi & Bj}l objects. Finally,
since nonadjacent vertices of G have A paths between them, any pair
of objects is contained in A blocks. Thus V and B define a block
design, establishing (i). For (ii) we use (1.11) which says that

A(v-1) = r(k-1) and (n-v)k = vr. Eliminating v from these equations

yields

(2.4) A + Rlrlr=1) ~ Mo-1)) + 0-2) = 0.
Applying (1.2) to (2.4) gives

(2.5) &% k{e=3) - (&=2) = 0.

Hence k = %(A—c + V(A-c)z + d(t-k)), and k > 0 demands we take the

plus sign so that from (1.7) we have
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(2.6) k = ~05-

The stated form for v follows from (1.11) and (2.6) O

In case G is d.c. by the design D we will say that D affords
G and that (G,D) is an affordable pair. GB will denote G|B and,
for B € B, FG (B) will denote the set of r-k blocks adjacent to B,
B £

AG (B) denoting the b-(r-k)-1 block% not adjacent to B.

Regarding v, a result of Haemers (1978) is worth mentioning.

THEOREM 2.7. Let H be a regular graph on n vertices whose adjacency
matrix has eigenvalues )‘1 > 7\2 2...2 A, g(xl = valence). Then any
*
independent set in H contains at most n(-xn)/(xl-xn) vertices.
Applying Theorem 2.7 to a d.c. G = G(n,r,c,})) gives a bound of

nk/(r+k) on the number of independent vertices. From (1.11) and

Theorem 2.3 the bound becomes

(b+v)k _ v(xr+k) _
T+ T rtk

Vs

so that in our case an object set has maximal order.

Before generalizing the idea of design constructibility, we cite
an unusual instance where a strongly regular graph G is not d.c.

while its complement G' is d.c.

THEOREM 2.8. No strongly regular G = G(27,10,1,5) is d.c., whereas
there is a strongly regular G' = G'(27,16,10,8) which is d.c.

Proof. In order that any G = G(27,10,1,5) be d.c. we require (using
Theorem 2.3) a design D with parameters (9,18,10,5,5). Such a design
exists (see Hall (1967)). Set V = {1,2,3,...,9}. Let B = (1,2,3,4,5) be
a typical block of any D having the stated parameters. Then

TG(B) = {Bl,Bz,83,84,85,1,2,3,4,5} must be as in Figure 1.

Since ¢ =1 then {Bi n B} = {i} and thus
{Bi n (v-8)} = {6,7,8,9}, 1 <41 <5. From X =35 we see that
FGB(Bi) n FGB(Bj) =B, 1<1i, j<5,i# j. Hence reey, 1i=1,...,5,

contributes a total of twenty new blocks beyond B, Bl’ BZ’ 83, 84, 85-

But b = 18, a contradiction. Hence G is not d.c.

= 88 =

Figure 1. PG(B).

The G' we speak of is the Schifli graph (see Cameron et al. (1976)),

which is represented as follows: the vertices of G' are the vectors

-> -> = -
fei + e 1<i4, j<6,1i# j}
Uazs:e-"e’—'é !528:3—3-3-151<6
SRLEE R “ T i) g &

where Zﬁ is the standard basis vector of Rg which has a 1 in
position m, 0 elsewhere. Two vertices are adjacent if and only if their
dot product is 1. It is easily checked that

> -> > > > >
V= {e1 +e,, e, + & €+ e6} is an independent set for which all
vertices not in V are adjacent to pPrecisely two vertices in V. Hence
G is d.c. via D' = D'(3,24,16,2,8) which happens to be eight identi-

cal copies of Kg. 0

3. Eigengraphs.

We have already seen the close connection between the design para-
meter k and spec(A). There is an algebraic interpretation of this
connection which generalizes to other types of subgraphs (besides the
object subgraph) of a strongly regular graph.

Let A be any regular graph of valence r on n vertices whose
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adjacency matrix AA has integer eigenvalues. If Q is a subgraph of

A denote Xq to be the characteristic vector of § having

’ 1 if vertex i is in @,

(3.1) (XQ)

5 =
l 0 otherwise.
Definition 3.2. Call a subgraph € ofathe regular graph A an
eigengraph of L\ if

(i) 9 1is regular of some valence__E, and

(ii) every vertex in A\Q is adjacént to the same number n of

vertices in Q. Y
&

THEOREM 3.3. The graph Q 1is an eigengraph of a regular (r-valent) graph
A if and only if ‘

() A}\Xn = Xy, OF

(ii) & -n 1is an eigenvalue of A, with

R
Xo T T=(e-m) XA
a corresponding eigenvector.

Proof. Note first that Definition 3.2 is equivalent to saying

(3.4) Apxg = (E-n)xg + X, »

counts the number of vertices in Q that are adjacent

éince (AAXQ)i
toa A - vertex i. For E =71, n =0 we get that Theorem 3.3 1)

follows from (3.4) and conversely.

That (3.4) and Theorem 3.3 (ii) are equivalent (for &-n #r) is a

matter of using AAXA = rX, and some matrix multiplication. O

If p# r is an eigenvalue of AA corresponding to the eigengraph

Q, we will say that Q is type (p).

An algebraic interpretation of design constructibility is now

possible. For A =G, a strongly regular graph (with integer eigenvalues)

we see that an object set is merely an eigengraph of type (-k)
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=y = - ;
aving £ = 0, n = k. Thus design constructibility is equivalent to a

condition on the structure of the (-k) eigenspace of A

From now on we shall write the spectrum of A (the adjacency matrix

of a strongly regular G = G(n,r,c, A\)) as

(3.5) spec(A) = { B - JECH

1 Z z

where

(3.6) s = M0-0)2 + 4(r-2) = 2k - (A=c) .

Although this paper devotes its attention to object set eigen-
graphs, it is reasonable to consider other type (-k) as well as

type (s-k) eigengraphs. In the process we make another observation:

C?ROLLARY 3.7. If 9 is a type (p) eigengraph of N then A\Q is an
eigengraph of type (p).

Proof. 3
g 0J (Note that Xpg = Xy < Xg- Say that
X, = E—n =
A% ) xgtnx, = pxginx,, then A (Xpmxg) = P{xy~xg)+(r-E)x, and
the corollary follows. O

: .
et Qp denote a type (p) eigengraph of a regular graph A of
valence r. Denote by IQ | the number of vertices in Q . The next

Q nQ
Py Djl

theorem allows us to compute |Q | as well as
p

THEOREM 3.8. Suppose A is a regular graph of valence r on n vertices.
Let th . . poiy :
e adbacency matrix Ay of A have distinct integer eigenvalues
> >
T >0, > Py >...>p . Let the valence of a type (p,) eigengraph Q be

denoted Egs 2 <i<m. Then i
(i) b
7 Q = <
l oy o, » 2 <1i<m where £ bt
(i2) Q nQ = |a Q S A e .
o5 i [ o 25951
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Proof. AA is symmetric, hence distinct eigenvalues afford orthogonal

eigenvectors. Since Xp is an eigenvector for r then

n.
. o < 4
<xQ s xA,xA> 0, 2<i<m,
CH i

which reduces to (i) since (xQ ,xA) % ]Q I, (XA’XA) = n. For (ii) we
h“ P ]

p &
have i \
N n
i I -
Xo T 1ol X% ey xA) 0.
Py . %y !
3
Hence, by (i): b
lQ nQ I = ( s X )
0y Py xpQi g
nn.n
O % WS I I y 0
(r—oi)(r-oj) Py P35

We now cite a few examples of type (s-k) eigengraphs which are themselves

strongly regular.

Example 3.9. Note that the Hoffman-Singleton graph G = G(50,7,0,1) has

spectrum { Z 2§ ;i}. Any type (2) eigengraph 92 has (via Theorem 3.8)

10n vertices with valence & = 2 + n. For 02 to be strongly regular
we would need O triangles on each edge and one path of length two
between nonadjacent vertex pairs. For ¢ = 0, A = 1 there are but four
possible graph sizes (see Higman (1964)), namely n = 5, giving the
pentagon; n = 10, giving the Petersen graph; n = 50, giving the
Hoffman-Singleton graph; and n = 3250, a graph.whose existence is
unknown; comprising the so-called Moore graphs. Hence we must

choose n =1 and get 92 = 6(10,3,0,1), the Petersen graph, (an
embedding property which is well known). Applying the same procedure

to the Petersen graph we verify that it contains the pentagon as a (type
(s-k)) eigengraph. Having obtained this sequence of embedded eigen-
graphs, we naturally ask if the largest Moore graph G = G(3250,57,0,1)
could have the Hoffman-Singleton graph as an eigengraph of either type?

After computing the spectrum we find that, unfortunately, this is impossible.
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Any type (s-k) eigengraph in G = G(3250,57,0,1) would have 65n
vertices and valence n + 7, while a type (-k) eigengraph would

have 50n vertices and valence n - 8.

Example 3.10. The Petersen graph can be partitioned into two type (s-k)
eigengraphs, namely two pentagons. The Hoffman-Singleton graph can be
partitioned into five disjoint type (s-k) eigengraphs, namely five
Petersen graphs. The Higman-Sims graph G = G(100,22,0,6) (see

Gewirtz (1969)) has been shown by Sims (1969) to contain two disjoint
Hoffman-Singleton graphs, indeed two type (-k) eigengraphs.

4. Spectral and Matrix Properties.

The presence of an object set of size v in a strongly regular
graph induces many interesting spectral relationships between the
adjacency matrix A of the graph, the block intersection matrix
Y= BTh of the design, and the b x b submatrix C of A describing
block adjacencies. In this section we determine spec(C) and develop

several matrix relationships between Y and c.

Assume that G = ¢(n,r,c,)) is afforded by D = D(v,b,r,k,A) with
design parameters as described in Section 2. 1Index the vertices of G
so that the first v vertices {01,...,ov} correspond to the objects
and the last b vertices {81,...,Bb} correspond to the blocks of D.
Let B be the v x b object-block incidence matrix of D (as in (2.4))
and denote by C the b x b matrix for which Cij =1 if Bl ~ Bj’

0 otherwise. We write A as

(4.1) A= =

THEOREM 4.2. The spectrum of C 1is

r-k s-k s=-2k -k
spec(C) = s

1 zz—(v-l) v-1 -v

23

.2, are as in (1.8).

where z 3

2
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We need a lemma before beginning the proof.

LEMMA 4.3.
(i) C* = (e-M)I + (e-A)C + AJ - ¥,
and
(Z2) BC = (c-A)B + LSS

Proof. From (1.5) and (4.1) we get

BB BC I 0 0 B

% g = (@] Vv % () " 3+ AT .
CB- C +Y 0 . S
The lemma follows. O

Proof of Theorem 4.2. We multiply Lemma 4.3 (ii) on the left by BT to

obtain, via (1.16),

(4.4) YC

(e=N)Y + kAT .

Note also that

(4.5) CJ = JC = (xr-k)J .

We eliminate Y from (4.4) and Lemma 4.3 to obtain

(4.6) S + 20-0) + ()2 = (x=A))C

= (r=2) (A-c)I = AJ(r-(2k-r+c)) .

Multiply (4.6) by C, then eliminate J from the resulting equation via
(4.6) to obtain

.7) - e +r =B

- 2(-1) - (A-0)2 = 2(e-K)(e-A))
- C((e-2) (A=¢) - (r-K) (x-A-(A-c)?))
+ (r-k) (A-c)(r-2)I = 0 .

Since r-A = k(s-k), c-A =s - 2k (by (2.5) and (3.6)), we may rewrite {
(4.7) as

= 94 =

(4.8) (C = (r-kK)I)(c - (-k)I)(C - (s-k)) (C - (s-2k)I) =0 .

Thus we have

r-k s-k s-2k -k
(4.9) spec(C) =
w w w w

1 2 3 4

for appropriate (positive integer) multiplicities Wis Wys Wa, W, Note

that

e e e e e
(4.10) tr(C°) = wl(r—k) + wz(s—k) + w3(s—2k) + w4(—k)
and that C:i counts the number of closed paths of length e starting
and ending at Bi. For e=0, 1, 2 the counting is simple. For e = 3
we get
(4.11) ¢, =e(x-20), 1sis<b,

which follows from inspecting the diagonal elements of (4.6).

Consequently
tr(Co) =b,
tr(C) =0,
(4.12) { g
tr(C™) = b(r-k) ,
tr(C) = be(z-2k) .

Combining (4.12) with (4.10) and using (1.8), Theorem 2.3 (ii), and (1.11)
gives Theorem 4.2. ]

THEOREM 4.13. G(n,r,c,A) <8 afforded by D = D(v,b,r,k,\) <if and only <if
() (1.12) holds,
(iz) Te (B) contains c repetitions of the k objects in B
3 .

and )\ repetitions of the remaining v-k objects of D, for all
B € B, and
(ii1) the number of blocks adjacent to both By and Bj is
(a) -k Zf 1i-=j,
(b) c-Y,., <if Bi ~ Bj’

1]

(c) A-Yij if By * Bj’ for all 1i,j.
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Proof. For (ii) notice that (BC)ij counts the number of repetitions

of object o in FG (Bj); hence (ii) is equivalent to Lemma 4.3 tii).
B

Clearly (iii) is equivalent to Lemma 4.3 (i). Thus the theorem says that
(G,D) is an affordable pair if and only if Lemma 4.3 and (1.12) hold.

Certainly Lemma 4.3 and (1.12) are necessary for design constructibility.

For sufficiency observe that w@ need only establish (1.4) and (1.5)
when A is written as in (4.1). ButiLemma 4.3 and (1.12) give us (1.5),
while the row (column) sum of r for ,A follows directly from Theorem
4.13 (ii), (iii), and (1.12). O

A situation that utilizes Theorem %.13, in the negative sense is

?

COROLLARY 4.14. No graph G = G(16,5,0,2)' is design constructible.

Proof. 1In order for a design D to afford - 6(16,5,0,2) we require
(via Theorem 2.3) the design parameters (6,10,5,3,2). Hall (1967)
‘established the uniqueness of such a design. We will represent the

blocks of D as

(4.15) {@,2,3),0,2,5),(1,4,6),(1,5,6) ,(1,3,4),
(3,4,5),(2,3,6),(2,4,5),(3,5,6),(2,4,6) }.

Note that every pair of distinct blocks intersects in one or two objects.
Hence it is impossible to satisfy Theorem 4.13 (ii) on the r-k = 2 blocks
adjacent to a given block. Thus G = G(16,5,0,2) (although it has been

constructed by other means, Biggs (1971)) 1is not design constructible. [

5. Design Constructions of Some Knowm Graphs.

There is an abundance of examples of known strongly regular graphs
G that can be constructed by finding an appropriate design D affording
G. Indeed, any strongly regular graph having a transitive automorphism
group and possessing an ebject set is design constructible, the constancy
of the block size being guaranteed by vertex transitivity. In the inter-
est of symmetry, we present some of the more "coherent" constructions,
that is, those for which the block adjacency rule is independent of
block choice. The following result has also been noted by Seidel (1976).
We include its proof in order to detail an important example of design .

constructibility.
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THEOREM 5.1. The Hoffman-Singleton graph is afforded by PG(3,2).

Proof. From Theorem 2.3 we need a design D = D(15,35,7,3,1). There
are eighty nonisomorphic designs with these parameters (see Cole, White,
and Cummings (1925)). We will first establish the reasons for singling

out PG(3,2). For a block B8, FG (B) must consist of four mutually non- -
B

intersecting blocks (X = 1), which are all disjoint from 8 (c = 0).

Writing FGB(B) = {81,82,83,84) we require then that {8,31,82,83,BA}

constitute a complete replication of the fifteen objects, i.e.,

{Bu FG (B)} is a parallel class. Having chosen TG (B), we then look
B B
at Bi(i =1,2,3,4). Each {Bi U FG (Bi)}’ 1<1i<4, must be a parallel
B
class, and since A =1, ¢ =0 we have FG (B,) n FG (B,) = B,
B 1 B I

1

IA

i, j <4, i 4 j (see Figure 2).

%

%
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Consider the seven blocks {Bi,B%,...,B%} containing the common
objeet 3, J =1,2,...,15. Since 2 =1, T (Bj) o I (BJ) =@ for
GB i GB 4

i, 2=1,...,7, i # 2. Thus the design must be resolvable, i.e., we
must be able to partition its thirty-five blocks into seven parallel

classes.

The resolvability requirement is precisely what led to the Kirkman
Schoolgirl problem, posed and solved Qy Kirkman (1847). A schoolteacher
takes her class of fifteen girls on a daily walk. The girls are arranged
in five rows of three each, so that each girl has two companions. The
problem is to arrange the girls so that for seven consecutive days no

girl walks with one of her companions in a triplet more than once.

The Kirkman design thus obtained is isomorphic to the design
obtained by taking as objects the fifteen points of PG(3,2) and as

blocks the thirty-five lines of PG(3,2). Not only is PG(3,2) resolvable

but it has the largest automorphism group (PSL(4,2) = A8) among the
eighty designs with the same parameters (see Cole et al. (1925)).

The following resolution of PG(3,2) serves to give a new con-

struttion for the Hoffman-Singleton graph.

Parallel

Class
1 {(1,2,3), (6,8,14), (5,9,12), (4,11,15), (7,10,13)}
2 {(1,4,5), (2,8,10), (6,9,15), (3,13,14), (7,11,12)}
3 {(1,6,7), (2,9,11), (5,8,13), (4,10,14), (3,12,15)}
4 {(1,8,9), (3;4,7), (2,13,15), (6,10,12), (5,11,14)}
5 {(@,10,11),(2,12,14), (3,5,6), (4,9,13), (7,8,15)}
6 {€1,12,13),(2,4,6); (3,8,11), (5,10,15), (7:9;14)}
7 {(1,14,15),(2,5,7), (4,8,12), (6,11,13), (3,9,10)} .

Table 5.2.

The geometry PG(3,2) has another property that can be exploited,
namely, given two disjoint blocks B, B, there exist exactly two parallel
classes containing B and E; and these classes have only B8, B in
common. For example, with (1,2,3) and (5,9,12) we get {(4,11,15),
(6,8,14), (7,10,13)} and {(4,10,14), (7,8,15), (6,11,13)}.
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We now present the rule describing block adjacency in GB'

5.3) (i) Any block of the form (1,i,j) is connected to the
four blocks in the same parallel class (in Table 5.2) as (1,1i,j).

(ii) Any block B of the form B = (i,j,k), i, j, k # 1,
is connected to the block B which contains 1 and is in the same
parallel class (in Table 5.2) as B, and to the uniquely determined

three further blocks which form another parallel class on B and 8.

Thus for example we have the situation of Figure 3 for the blocks at

distances one and two from (1,2,3) in GB.

(4,9,13)
Slois) e 7§ ,1,12)
(G)S) ‘+)
7,9,14)
(} A / (4,[01 ,4‘)
. 5)
(61012 (7.8,
e (4n,15) (1,2,9 (5;9,12) ’
(6,11,13)
(5,%,13)
(7,10,13)
(43,12) ! (6,9,15)
(511, %)

Figure 3. {B € PG(3,2): 3, (8,(1,2,3)) < 2}.
B
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It is routine to check that (5.3) defines the correct block
adjacency rule, thus providing a design construction for the Hoffman-

Singleton graph. (For the full Gg see Figure 4.)

1,12,13)

: (1,12,13)
s )
y : (2,9,11)

(3,47)

(49,13)

(1,89)
@,315)

(3,5/)

(ly10,01)

(2,4,6)

N (2,3)10)
(ll glq )
(3,50

(2,2,19

Figure 4. The Block Graph of the Hoffman-Singleton Graph.
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A design affording the next Moore graph G = G(3250,57,0,1) would
have to have parameters (400,2850,57,8,1), which are precisely the
parameters of PG(3,7). We conjecture that a resolution approach similar
to the one employed in Theorem 5.1 should be taken. The difficulty here,

of course, is the size of the design.

Definition 5.4.

(i) In a design D = D(v,b,r,k,)) distinguish a block B and
set m, = [{B e B\B : |BnB| =1}, 0<4i<k. The set {mo,ml,...,mk}
will be called the intersection distribution of block B.

(ii) A design D is called quasi-symmetric if every block has

the same intersection distribution, consisting of only 2 nonzero values.

As observed by Cameron and Van Lint (1975), quasi-symmetric designs
afford strongly regular graphs when the blocks comprise 511 of the vertices.
Here two blocks are connected if and only if they intersect in a certain
order. This is not the only use that can be made of such designs for
constructing strongly regular graphs. We present here two known graphs,

each constructed in a new way via quasi-symmetric designs.

A well known family of strongly regular graphs is obtained from the
projective geometries PG(3,q), wherein the vertices of the graph are
the n = (q2+1)(q2+q+1) lines of the geometry and two lines are adjacent
if and only if they intersect (see Biggs (1971)). The parameters
of the resulting graph are

((241) (gZ+a+), a(etD)?, 2q%4q-1, (a+D)?) .

We present the design construction of PG(3,2).

THEOREM 5.5. The graph G = G(35,18,9,9) is afforded by three copies

Dl’ D,, D3 of Kg by means of the following rule: <if a block of

copy uw 1is denoted by g  then
Hy _ rgH LAt e
rGB(s ) = (8" ¢ Du.IB ng|=1}

U e D :o #u,|8° n g% =2} .

Proof. To afford G(35,18,9,9) we require a design D with parameters
(5,30,18,3,9), which we may take to be three identical copies of Kg-
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5 establishing (5.8) (i).
Observe that Kq has intersection distribution {0,3,6,0} for each block

(quasi-symmetric), so that the rule is well defined. Let B denote the As for (5.8) (ii) we note that
5 x 10 object-block incidence matrix of Kg and let Y = BTB. Let S
be the 10 x 10 matrix that is 1 wherever Y dis 1, O otherwise. (5.9) 83« =M,
Then
while
. . ) if i=3,
3 = + S + - =I-5S+ . X
(5.6) Y=31I+S+2( ﬁ,—I) I-8+2] (Sz)ij = (1 if §;;,=0, 143,
The block adjacency rule states that C, the block adjacency matrix is 0 if Sij =1,
given by
v so
Y
D1 D2 3 D3 )
’ (5.10) s? =3 +21-5s.
D S J-S8S-1-" J-S-1
1
{5:7) C=D2 J-8S-1 S J-8S-1 - Setting T=J - S - I we have
p,|li-s-1 J-s-1 s ' s 4212 25T+ TX 25T+ T
2-2T+ T2 SZ+2T2 ZST+T2
By Theorem 4.13 and its proof it suffices to show that ¢ =128 2 2
ZST+T2 ZST+T2 S +2T2
(1) [B:B:BIC-= 9J5x30,
(5.8) which reduces via (5.10), (5.9), and (5.6) to
° Y X X .
(ii) c2=91+9J—[Y Y Y]. 91 0 J J Y Y ¥
RS : C2 =0 91 0 | +9}|J J Jl-]1Y Y Y
b 4
Note first that 0 0 91 L . %
BJ5><10 = 6JS><10 » JSXSB = 3J5x5 * so that (5.8) (ii) is in force. Hence the construction. 0
Hence ‘ We present one final construction using similar techniques. It
BS = B(I+2J-Y) = B + 12J - BBTB . is included to introduce a design that will afford two graphs in the
. present situation and will afford yet another construction in Section 6.
Using (1.12) we have A (design—free) construction of a graph G = G(36,15,6,6) is cited
BS = B + 12J5x10 - (3I+3J5x5)3 > in Biggs (1971). We prove: ’
or I )
THEOREM 5.11. The graph G = G(36,15,6,6) s afforded by three copies
BS = B + 127 - 3B - 9J = 37 -2B . & Bl 3 5 = =
5x10 5x10 5x10 B,, By, Dy of the unique design D =-D(6,10,5,3,2) (see (4.15)) by means
3 TR
s ‘ of the rule: if B" is a block of D then
B - [ s - = D] = Wy _ g _ p .|8¥ Bl = 4
[B:B:BIC = [-BS + 2BJ) 4xq0 ~ 2B: -BS + 2BJ . .= 2B:-BS + 2BJ, . . -2B] - I‘GB(B ) =1{B" € Du.|6 n 8Y| }
-0 - =0 H
: n =2} .
or UE® ediu#to [B nsl
[B:B:BIC = [9J5x10:9J5x10:9J5x10] X
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Proof. A design with parameters (6,30,15,3,6) is required; note that D
has intersection distribution {0,6,3,0} for each block, so D is
quasi-symmetric. Carry out the exact same procedure as in the proof

of (5.5).

We note that both Kg and D give rise to a familiar strongly

i

regular graph.

| |
COROLLARY 5.12. There are three disjoint copies of the Petersen graph
in the graph 6(35,18,9,9) constructed in (5.5), while the graph
G(36,15,6,6) constructed in (5.11) conta@ps three disjoint copies of the
complement of the Petersen graph.

Proof. 1In the proof for G(35,18,9,9), S satisfied (5.9) and (5.10),
making it (see (1.4) and (1.5)) the adjacency matrix of a strongly
regular graph with parameters (10,3,0,1). The three Petersen graphs
arise from the three copies of S used in (5.7). For G(36,15,6,6) the
10 x 10 matrix S whose rows and columns are indexed by the blocks of

D and® for which
. (1 if [8; n le =1,
sij =
0 otherwise,

2 - 21-5+4J and 57 = 6J. Thus § is (via (1.4)and

(1.5)) the adjacency matrix of a strongly regular graph whose parameters

is seen to satisfy S

are (10,6,3,4), the complement of the Petersen graph. The three copies of
this graph arise from the three copies of D used in Theorem (5.11) . O

6. The Dodecahedron.

This chapter is devoted to the design construction of a strongly
regular graph with parameters (26,10,3,4).

First we give the design construction for such a graph and establish
a close tie between the graph and the Petersen graph via a "fusion" of
blocks. Second we are able to exploit the presence of the Petersen graph
to determine the automorphism group of the graph and give it a pleasing

geometric realization.
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By Theorem 2.3 the design construction of a strongly regular graph
= G(26,10,3,4) requires a design D with parameters (6,20,10,3,4).

There are two natural choices for D, namely,

(6.1) (i) D=K

(ii) D is obtained from two copies of the unique (see Hall (1967))

o e 42
D = D(6,10,5,3,2). Here we write D =D .

For reasons discussed in Thompson (1979), we work with the design of (6.1)

(ii) and obtain
THEOREM 6.2. The design 5 affords a strongly regular graph G_2(26,10,3,4)-
D

Proof. We will refer to the two copies of D comprising 52 as
D0 and Dl’

50, o=0,1, as

the subscripts taken modulo 2. Represent the blocks of

{1,2,3)°%, 1,2, 2,3,6)°, (2,4,6)°, (1,3,4)°
(3,4,5°, (2,4,5°, (3,5,6)°, (1,4,6)°, (1,5,6)%}.

Since we will be using two identical copies of D, we note that
there is no contradiction in agreeing that each block is adjacent to
the block identical to it. This amounts to putting three triangles
(from objects) on each edge <Bo,81>. Having agreed to this convention,
we cannot have a block Bo(o =0 or 1) adjacent to two identical
blocks (since otherwise there would be four triangles on the resulting
edge) . Hence FGB(BO) n FGB(BI) =@ for every Bo € 50. The rule

that Bo 4 81 for every Bo € ﬁo is almost sufficient to determine the

block adjacency rule. Since FG (Bc) must contain four repetitions of

each of the objects not in BU and three repetitions of each of the
objects in BU, (see Theorem 4.13 (ii)), the following rule determines the
makeup of the blocks of FG (BG):

. B
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(6.3) For 80 € 52, where Bc - (i,j,k)q, we take

ax :
r (80) to comsist of Bo * plus the six

G
B

uniquely determined (up to copy) blocks

o o] o
1 ow B s B

2,m,i) -, (2,m,j) ~, (2,n,1)
o %

(m’nrj) ) (man’k) s where 2, m, n are

(o]
, (2,0,K) 2,

$ 5. 150
the three objects not in ;B o

3

Here, at least, is a design for which the block adjacency rule can (up
to copy) be uniquely prescribed, independent of the block. For example,

with BO = (1,2,3)0 we get 4

a > Q0 g
rG (60) = {81,(314)5) 1’(2:4’5) 2’(114’6) 2 >
B

g (e} o
(2,4,6) *,(3,5,6) °,(1,5,6) °} .

The only undecided part that must be settled is the selection of
015095+30g- This is where Theorem 4.13 (iii) is used. Note that (6.3)
requires

(o]

(6.4) 6° ~ 8; if and only if g7 ~ gI*!

i
which cuts the work in half. Also, (6.4) is equivalent to saying that
the map (involution) B:B0 - B(H.'1 defined on 52 is an automorphism

of G. We may write the block intersection matrix Y of 52 as

]
]

(6.5) Y- >

]|
&l

where Y is the block intersection matrix of D, and C may therefore

be written as

C C.
(6.6) TN Nl P
c2 cl
o+l o . g
since FG (B ) is determined by FG (B”). We also have that
B B

C1 o C2 = 0. There is enough information now to limit significantly

the choices in the makeup of FG (Ba).
B
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To begin the construction we take FG ((1,2,3)0) = {(1,2,3)1,
B

1,46,60% 1,50, 2,49, 2,4,60°% 3,5,6° 3,4,9) vichout
loss of generality. This also determines FG ((1,2,3)1) because of
(6.4). This choice yields Figure 5. .

Consider FG ((1,4,6)1). It must consist of (1,4,6)0 and
: B

0 ; P % 92
(1,2,3)" and, up to copy choice, (1,2,5) ~, (4,3,5) -, (4,2,5) <,
o o
(6,3,5) 4, (6,2,3) 5. From Theorem 4.13 (iii) applied to the edge

<(1,2,3)0, (1,4,6)l> we see that (1,4,6)l is adjacent to two of the

0

blocks of Ty ((1,2,9% \ (1,2,9)%, 1.e., two of (2,4,9%, (3,5,6°,
B

(3,4,5)1. Applying Theorem 4.13 (iii) to (1,2,3)0 and to some block
of Te ((1,2,3)1) we see that an additional path of length two is needed
B

between (1,2,3)0 and each of the blocks of FG ((1,2,3)1). Hence
B

' (14,6) (1,46
(1,5:0) . 1,56)°
1
24,9 (2,45)°
(1,2,3)° ,23)
(-]
24k
o (2,4-,6)'
G, 4 5-)' (314’/ 5 )0 ]
5,6
(3'.5-)‘:)0 (3) 7 )

Figure 5. rGB((1,2,3)°), G = 0,1.

1
(1,4,6)", for example, is adjacent to one of (2,4,5)0, (3,5,6)1, or

0
(3,4,5) . There are analogous requirements for FG (B) for each
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BT € I‘G ((1,2,3)0)\(1,2,3)1. In the interest of symmetry we choose the ok r
B

1
two blocks of I‘G ((1,2,3)0)\(1,2,3)l to be connected with (1,4,6) as S
B

that pair having but one common object. Proceeding in this manner we obtain: o=t

(2,6, 3,5,6°% 3,6,5%, e

tu

re ((1,4,6))
» ‘ 0 1 0
124,6)%, (3,6,59%, (2,4,59°), i

v

1
r. (Q1,5,6)7)
Cg

(ak,el, 3.5.60°% @,5.6%, =

(NY)

1
SUCDR
e (2,4,6)%

8 0 1 1 |
e (3:5:6) 2 (497 26,9 26,07, —

1,50 2,4,6°% 1,4,6%. | ‘ -

(6.7)
(@560 3,45 3,564, : B

v

[RY}

5
T, ((3,4,57)
Cg

We have now nearly completed fourteen rows of C. Applying Theorem 4.3 (i) HaNMN 4 O 0O OO 4O A0 OO0 40 0 o0 —H o ©

repeatedly to these rows and the remaining rows of C, and keeping in . o & S s e B S v o e
mind the rules (6.3) and (6.4) we eventually obtain the block- adjacency gyl

matrix listed in (6.8). The graph obtained is unique up to the switching
of labels on any pair of identical blocks. g

Taking the 6 x 10 object-block incidence matrix B of D' to Sl
ra— i T am—,
get B = [B B] for the object-block incidence matrix of D2 we MmN O H O O O 0O © © O - H O +H -4 O -4 0 © ~H ©

| o _—
observe that H o

NMmMY ©O O ©O O o 0O 0O O O 40 - 4~ o0 O O

satisfies (1.5) and (1.6). Hence we have a design construction for a ‘ P

- ©O - OO0 - - O
strongly regular graph, which we will denote by G_2 = G_2(26,10,3,4). 0O 8D e e s deee 9@e ) Z
- " o.-cwmooo—cooo.—aoo-—coooc-—a—co-—c-—(
N— L

It would be gratifying to have a more pleasing picture of G_2
D

Pl e B e e i e B e B e B e e e e B e B e e e e R N
s T i e R B e e e R s e R S e T il
than its adjacency matrix. o that end we introduce the next definition. e OC R S BT T I (I
- - - - - - - - - - - - - - - - - - - -
- - N N - MmN M A A H AN N A M N M- -
N N N N N\ N o N N N A N N N N A A N N\ ~r
]
(o)

Definition 6.9. Let D = D(v,2b,2r,k,2)) be a design obtained from two
copies D! and D! of D' = D'(v,b,r,k,\), the subscripts taken modulo

0 :
2. Label the blocks of D as Bo with o = 0,1 denoting respective =
copy. Let D afford G = G(n,2r,c,2)). Let 6:8°+80+1 be a block graph 3

0 ~
i
of GB as that graph whose vertices B are identified as block pairs

automorphism and let B8 81 for all i. Define the fusion subgraph G

3
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B = (BO,Bl); 80,81 in GB' The rule of adjacency in Gf is

FG ®) = {B = (Eo,él) € Gf:B0 ~ ET,G =0 “‘or 1, =0 eor 1} .
: 4

THEOREM 6.10. Let (G,D) be as described in Definition 6.9. The block
adjacency matrix C of Gg may be wrﬁftgn_

P Cz]
C2 C1
and the adjacency matrix of Gy s c, + gz - I1-C¢ °C,. Inparticular,

for c =k the adjacency matriz is C, + 62 -1 and G, has valence
2r - k - 1.

Proof. Requiring that e:BU+BO+1 be a GB automorphism is equivalent to
T+1

imposing the rule BO od BI if and only if Bc+l ta 81 » so clearly C has

the form indicated. From the presence of 6 we note that BO, 81 = Eo
: 0 1 =0+l "
entails B, B ~ Bc . Thus, if T (BO) nT (Bl) = {BO ,Bl ,...,Bo ,B% 1,
G, i Gy i s R Al §
B B 1 71 P P
say, then (Cl + CZ)iim =2, 1<m<p, and so (Cl o C2)iim= 1, 1=<m<p.

=1, 1<1i<b. Thus G, has the

Note also that C, has (C £

2
indicated adjacency matrix.

2)11

In the case c¢ = k then every edge <BO,81> of GB has no

triangles, whence C1 o C2 = 0. Thus Cl + C2 - I 1is the correct Gg

adjacency matrix in this case. Clearly, the valence in Gf is 2r-k-1

in the case c¢ = k. 0

We now establish the relationship between G_, and the Petersen
graph r
THEOREM 6.11. For G

the fusion subgraph G_ is the complement of

£
the Petersen graph having parameters (10,6,3,4).

99
D2

Proof. We have Definition 6.9 in force and ¢ = k. From (6.8) we verify

that C. +C, - I=2¢

1 > £ satisfies

the adjacency matrix of Gf,
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CfJ = 6J and C% =21 - Cf + 4J. Hence, by (1.4) and (1.5), Gf is
strongly regular with parameters (10,6,3,4) and hence is the complement

of the Petersen graph. O

From the fusion subgraph Gf obtained above we can realize G-Z

geometrically. To motivate the next theorem we make the following

observation:

PROPOSITION 6.12. A Petersen graph can be obtained from the ten antipodal
pairs of vertices of a dodecahedron.

~Proof. Recall that a dodecahedron has twelve pentagonal faces, twenty

vertices, thirty edges. Identify an antipodal pair of vertices as one
fused vertex and construct a graph on the ten fused vertices by adjoining
two fused vertices if and only if the corresponding original four
dodecahedral vertices are the vertices on two dodecahedral edges. Clearly

the result is a Petersen graph. O

THEOREM 6.13. G_, may be constructed from the faces and vertices of
D

a dodecahedron.

Proof. The six objects of the design D are the six antipodal pairs

of pentagons on the dodecahedron. Label the (fused) faces {1,2,3,4,5,6}.
The twenty blocks of the multiple design are the twenty vertices of the
dodecahedron where each block contains those objects which, as pentagons,

meet at the given block vertex. (See Figure 6.)

We see that a copy of the ten blocks of D is obtained by taking
the five blocks forming any pentagon and the five further blocks that
are dodecahedrally adjacent to these (much like a "top half" of the
dodecahedron). The other copy of D is made up of the remaining

ten corners (antipodal to the first ten). Note that antipodal corners
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(54,Gf

(1,39,

(l)l)f)'

(4,2,3)’

Figure 6. The Dodecahedron, Embedded in the Plane.

(Object labeling done so as to be consistent with D.)

correspond to identical blocks. Our design construction of G_, is
D
then obtained from the dodecahedron as follows:

Taking the six objects (antipodal pentagon pairs) and twenty

blocks for the twenty-six vertices of G_z, we connect an object vertex
D

. to the ten blocks (dodecahedral cornérs) bordering the corresponding
pentagonal pair. We comnect a block Bo+1 antipodal to 80, and to
those six blocks which, as dodecahedral corners, are at distance three
from BU on the dodecahedron. This rule, in fact, gives the adjacency

matrix A as described in Theorem 6.2. O

By means of the dodecahedral realization we have the next theorem.

THEOREM 6.14.

(i) Aut(G_,) = 1, the icosahedral group;
D

5.’

>

(ii) Aut(D) =

- 112 -

(i) (@) = a_ x (z)10,
5 2 2

(iv) The map that fuses 6_,)g into G, induces a homomorphism
D

¢ : T~ Aut(P), where ker(¢) = 22 and Aut(P) <s the automorphism group

of the Petersen graph; hence A5 < Aut(P).

Proof. 1t is well known (Benson and Grove (1971)) that the group of
symmetries of a regular dodecahedron is T = A5 x 22, A5 being the
rotation subgroup and 22 the subgroup that interchanges antipodal dode-

cahedral vertices. Thus we have (i).

For (ii) we may identify antipodal dodecahedral vertices as the
same block. From our embedding of D in a dodecahedron we have that
Aut(D) comsists of precisely those object permutations (pentagon
permutations) that preserve the dodecahedron. Hence Aut(D) is

isomorphic to the rotation subgroup of I, i.e., Aut(D) & AS'

For (iii) observe that the switching of the labels on any pair
0 1 = =
(B",B8) of blocks in D2 preserves D2 so (iii) follows.

For (iv) we note that for a permutation of the vertices (blocks)
resulting from a rotation ¢ € A_ of the dodecahedron we have

5
T+l

T +1
if and only if ¢(Bg ) = Bj . Thus any rotation may be

3

represented by a permutation matrix of the form

¥ =8

5 &
and hence any matrix Q representing an element of I is of the form
R [
L P LR B NLE
» B B Bl o %
Define ¢ : I-Aut(P) by setting ¢(Q) = (R1 + R2). Clearly ¢ is a
homomorphism for which

4>(0.)(C1 +C, -1) = c, + ¢, - D¢(Q

if and only if QC = CQ. Also,

0 I
ker(¢) = s (D] .
I 0
Therefore I/ker(¢) = AS < Aut(P). d
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