Header for SPIE use

Development of Bayesian Diagnostic Models

Using Troubleshooting Flow Diagrams
K. Wojtek Przytula*a, Don Thompson**b

aHRL LLC; bPepperdine University
ABSTRACT

Bayesian networks have recently become a modeling technique of choice for development of flexible, accurate, and complex diagnostic systems. These characteristics are obtained, however, at the significant cost of data and expert knowledge. It is often the case that a troubleshooting flow diagram, the most popular way of representing troubleshooting procedures, is already available for the system and can be used as a starting point for design of the Bayesian network. It turns out that conversion of the flow diagram into a Bayesian network is very similar to conversion into a diagnostic case base. We compare the case base and Bayesian network obtained by conversion with the original flow diagram, from the point of view of their diagnostic performance. We also describe a procedure for cost and time efficient enhancement of the original case base and Bayesian network. We discuss the sequencing algorithms necessary to use case bases and Bayesian networks in troubleshooting, with particular attention to decision tree and Value of Information based sequencing. We have used our design procedure in development of several complex diagnostic systems for troubleshooting of satellites, vehicles, and test equipment.

Keywords: Bayesian Networks, Case-Based Reasoning, Decision Trees, Diagnostic Tools, Troubleshooting Flow Diagrams, Value of Information

1. Introduction

Complex systems are very hard to diagnose for several reasons. They have multiple components and subsystems that interact with each other in complicated ways. The observations available to identify a defective component are numerous and difficult to interpret. The person troubleshooting a complex system is expected to interpret initial observations and derive a sequence of tests. These tests are supposed to lead in a most efficient way to the detection of the defective component or components, as well as assure a highly accurate diagnosis. It is not surprising, therefore, that various types of diagnostic support tools have been proposed to assist in troubleshooting.

This paper compares three of the most popular approaches to diagnostic tool design: diagnostic flow diagrams, Case-Based Reasoning and Bayesian networks. They use very different representations of diagnostic information and present quite different challenges to a tool designer. Diagnostic flow diagrams are explicit graphical representations of sequences of tests along with diagnostic conclusions, representing a popular solution to the diagnostic problem. Case-Based Reasoning (CBR) uses databases of diagnostic cases and compares them to diagnostic problems at hand. Bayesian networks are models of causal dependencies between components and observations. These models are queried during diagnosis to produce recommendations.

Diagnostic tools for complex systems are difficult and costly to design requiring data, expert knowledge, or both. Therefore, it is important to carefully balance the tool’s development cost and its expected accuracy. We present a path of tool development that allows for gradual improvement in accuracy at the expense of additional data or expert knowledge. We show how popular diagnostic flow diagrams can be automatically converted into case bases or Bayesian networks and then enhanced to improve their performance. We discuss pros and cons of various enhancements and present the limitations of the three representations.

The literature of the topic is very broad, however most of the publications focus on only one of the three approaches. The diagnostic flow diagrams are discussed in [1]. An example of a diagnostic tool based on CBR is presented in [2]. Bayesian networks applied to diagnosis are described in [3], [4]. Papers on comparison or on combining two or more approaches are few. In [5] the integration of CBR with Bayesian networks is considered. Flow diagrams are compared with Bayesian networks in [6], where there is dependability analysis, which is closely related to diagnostics discussed in our paper. The closest to our paper is work on creating a knowledge base from troubleshooting flow diagrams presented in [7].

This paper consists of five chapters. Chapter 2, following this introduction, presents the troubleshooting problem and use of flow diagrams. CBR as applied to diagnostics is discussed in chapter 3. The chapter also includes conversion of flow diagrams into case bases and sequencing algorithms based on decision trees. In chapter 4 we present the application of Bayesian networks to diagnosis and we propose a method of gradual design of Bayesian networks starting with flow diagrams as the initial source of domain knowledge. Comparison of the three approaches is presented in chapter 5.

2. The Troubleshooting Problem

Diagnosis of a complex system is finding a source of a failure – a system defect – given observations. The observations may take different forms, the simplest being symptoms of failure. They manifest themselves in abnormal functioning of the system, and are usually available at the start of diagnosis. Other observations available early in the process of diagnosis are error messages that are generated in a computer that collects signals from the system and detects anomalies that are the basis of error messages. In addition to these two categories of observations, there are also tests and inspections that usually require considerable effort on the part of a person responsible for diagnosis, simply because they can be very time-consuming. Therefore, the diagnosis process requiring tests and inspections is usually performed as a carefully planned sequence of steps.

We call this sequence a troubleshooting sequence. It begins with evaluation of initially available evidence in the form of symptoms and error messages that suggest likely defects. Knowing the likely defects and available evidence, the troubleshooter needs to determine the best test or inspection to perform next. A desirable test or inspection is characterized by good discrimination capabilities and reasonable cost, where cost is often best expressed in terms of the time needed to perform the test or observation. Once the tests or inspections are completed, a new piece of evidence is available which improves the diagnostician’s ability to determine the most likely defect. At this point the troubleshooter may stop testing and perform a repair of the likely defect or select the next test or inspection. The decision depends on several factors including: the availability of a good next test, the likelihood that the suspected component is defective, and availability of a good verification that the repaired component was defective.

In general the troubleshooting sequence consists of several iterations: determining the likely defect, selecting the best next test, obtaining new evidence. This continues until there is sufficient confidence of the defect or there are no more good tests to be performed. It is very difficult to select the appropriate next test and to decide when to stop if the system under consideration is complex.

The consequences of a wrong diagnosis are often very serious. Therefore, it is important to provide a software tool assisting in the troubleshooting process. The expectations from such a tool are that it suggests to the user the most likely defect and recommends the test to perform next or recommends doing a repair. Several approaches have been used to develop such a tool, the most common being an approach based on troubleshooting flow diagrams, also called fault trees. We will use the former term, because the latter often designates a different form used in system reliability analysis. Troubleshooting flow diagrams are graphical representations of sequences of tests and resulting defects. Figure 1 shows an example of a troubleshooting flow diagram. Another common diagnostic tool is based on the Case Based Reasoning (CBR) approach. Here the information for the tool is collected in a database of cases, where each case consists of a list of observations and a conclusion – a defect. During troubleshooting, the tool generates sequences of tests one at a time. The third approach discussed in this paper is based on graphical probabilistic models called Bayesian networks or belief networks. These models allow the user to compute probabilities of defects given observation results. During troubleshooting they need to be augmented by a sequencing algorithm to recommend the next test.

Troubleshooting flow diagrams are trees consisting of nodes and directed edges. The nodes represent observations and defects. The edges emanating from each node correspond to the different outcomes possible for that observation. Test nodes have two edges, representing pass and fail outcomes. These edges lead to other nodes that represent the next observation or a defect node. Defect nodes are the leaves of the tree i.e. nodes at the end of each branch of the tree. Figure 1, shows an example of a typical troubleshooting flow diagram. It consists of six test nodes (T1 – T6) and seven defect nodes (D1 - D7). Each test node has two possible outcomes: pass or fail.

[image: image1.wmf]Diagnosis

PASS

PASS

PASS

PASS

PASS

FAIL

PASS

FAIL

?

FAIL

?

?

T

4

T

5

T

6

D

4

D

5

D

6

D

7

Figure 1. Example of a troubleshooting flow diagram with six test nodes

(T1 – T6) and seven defect nodes (D1 – D7)
Troubleshooting flow diagrams guide the user through a sequence of tests until a defect node is reached. At each test, the user selects a branch of the diagram appropriate to the test result. The user is told which test to perform, when to stop, and what is defective. It appears that this is exactly what the user needs. However, in practice the user is often not able to perform all of the tests prescribed by the diagram. When a problematic test is reached, the user must abandon the flow diagram and continue testing without assistance. Flow diagrams are rigid constructs that do not allow the user freedom of choice. Furthermore, they are only suitable for single failure diagnosis.

In addition, troubleshooting diagrams are difficult to design because they require a very high level of diagnostic expertise from the designer as the diagrams are expected to optimize the cost of diagnosis. To perform this optimization, the designer needs to select an ordering of the tests that balances the cost of the test with discrimination capability and defect frequency. Because these three factors are captured indirectly in the test sequence, it is common for two different experts to arrive at significantly different diagrams.

Troubleshooting diagram complexity grows exponentially with system complexity. Thus many small diagrams are used to troubleshoot a single large system. The user is expected to select the appropriate diagram using initial evidence, e.g. symptoms or error messages. Once the diagram is selected, the user is provided with troubleshooting support.

Modification of troubleshooting diagrams is also difficult and costly, so much so that it is common to leave diagrams unchanged despite alterations in the system design and in the testing procedures. This makes them become obsolete long before a decision to develop updated diagrams is made.

The troubleshooting tools based on CBR and Bayesian networks have significant advantages over the troubleshooting flow diagrams. They require, however, respectively a case-base or a Bayesian model. It is often the case that some troubleshooting flowcharts are already available whereas no case bases or Bayesian models are on hand. In these cases it is desirable to be able to translate the information contained in flow diagrams into a CBR or Bayesian network formats. We discuss the translation and related issues for CBR approach in chapter 3 and for Bayesian networks in chapter 4.

3. Case-Based Reasoning and Troubleshooting Flow Diagrams

Troubleshooting flow diagrams are widely used by system diagnostics experts to capture their troubleshooting process when diagnosing system failure. They provide a straightforward guide to the system technician by detailing a series of tests that the technician must perform in order to expeditiously specify the source(s) of system malfunction, [8].

The troubleshooting flow diagram structure often reflects procedures and assumptions about test execution that have developed by experience and tradition rather than in the interest of optimizing tree structure. Such optimization can be accomplished by minimizing the average number of tests that must be performed in a diagnosis procedure. This effectively balances the distribution of root to leaf paths.

The desired optimization can be performed with the assistance of a decision tree algorithm such as Quinlan's ID3 algorithm [9], as follows:

Step 1.
Convert the troubleshooting flow diagram to a case-based matrix M, consisting of all root to leaf paths in the diagram.

Step 2.
Apply ID3 to the matrix M, producing a troubleshooting flow diagram that has minimum average path length.

In so doing, we use ID3 to create an alternate troubleshooting flow diagram that provides an optimum means of diagnosis. Conversion and optimization bring cost and benefit that can be analyzed and exploited. Indeed, if we end the discussion here, we have simply provided an alternate means of constructing a decision tree - which yields an improved structure in terms of average path length. However, there are greater gains to be achieved if we consider the various phases of this two-step process, as illustrated below.

Step 1 consists of converting the original troubleshooting flow diagram to a matrix M of diagnostic cases. For the diagram in figure 1, this amounts to constructing a matrix whose column headings enumerate the test names followed by a single diagnosis entry. The rows of M correspond to each leaf of the tree, i.e. to each resulting system diagnosis.

The matrix M for Figure 1 is:

	T1
	T2
	T3
	T4
	T5
	T6
	Diagnosis

	PASS
	PASS
	?
	?
	?
	?
	D1

	PASS
	FAIL
	?
	?
	?
	?
	D2

	FAIL
	?
	FAIL
	?
	?
	?
	D3

	FAIL
	?
	PASS
	PASS
	PASS
	PASS
	D4

	FAIL
	?
	PASS
	PASS
	PASS
	FAIL
	D5

	FAIL
	?
	PASS
	PASS
	FAIL
	?
	D6

	FAIL
	?
	PASS
	FAIL
	?
	?
	D7

Each row is simply a root to leaf path of the troubleshooting flow diagram, where "Pass" and "Fail" indicate test decisions of tree traversal that point left or right down the tree at each test juncture. Entries consisting of a "?" correspond to"don't know" or "don't care" test outcomes which occur because the test outcomes are superfluous or unknown. This matrix is then provided as input to the ID3 algorithm, which in turn, produces a new troubleshooting flow diagram. The resulting diagram is shown in Figure 2. The average path length of the original troubleshooting flow diagram is 3.29 whereas the average path length of the ID3 diagram is 3.14.

By converting the troubleshooting flow diagram to case-based reasoning format, there are both losses and gains in information and diagnostic functionality. In terms of lost information, the matrix M no longer reflects the sequence or order in which tests are performed, i.e. we now have merely column headings without order of traversal. In fact, there is no longer even a root test or starting point for our decision process. Furthermore, any inherent cost of executing these tests, as represented by their relative position in the tree, has been sacrificed and must be restored. In effect, the table now represents the tests as a flat file of equally important, equally likely diagnostic questions. Finally, there is, at present, no information captured in the matrix M to reflect probablities associated with diagnosed faults. Essentially, the table presents the faults as having likelihood in proportion to their occurrence in the table. For example, table M infers that each fault is equally likely with probability 1/7.

All is not lost, however. By converting a "rigid" diagram to the case-based reasoning matrix M, we provide a means of intervention into the decision process. It is as if the system builder now has an open door to modify and enrich the information in the matrix. In so doing, we have the opportunity to create a dynamic and iterative diagnosis tool. Indeed, information about test costs and fault probability can be added at this juncture by merely augmenting the table M with more examples or with column weighting (features welcomed by ID3). In so doing, we can influence ID3's choice of tree root and placement of faults within the resulting diagram.

[image: image2.wmf]PLANT

SENSOR

COMPUTER

CONNECTION

INCORRECT

SIGNAL

INCORRECT

PHYSICAL

VALUE

SENSOR

RESISTANCE

Figure 2. ID3 Troubleshooting Flow Diagram

Perhaps the greatest advantage of converting back and forth between matrix M and the ID3 decision tree is described in what follows. If a user is using a troubleshooting flow diagram to diagnose a system failure, it often happens that a required test is inconvenient, expensive, or impractical to perform at the point in the troubleshooting flow diagram where it must be executed. For example, if a user of the tree if figure 1 had executed tests T1 and T3 but was unable to execute test T4, the diagnosis process is necessarily suspended. But this need not be the case! Because we have control over the diagram structure calculation via ID3, we can simply reload the algorithm by submitting a revised matrix M. We simply supply ID3 with a modified matrix that reflects our having deleted the visited test nodes T1 and T3, the superfluous node T2, as well as those path rows for D1, D2, and D3 that correspond to pruned faults. In other words, we re-submit the following matrix to ID3:

[image: image7.wmf]T3

T5

T1

T4

D7

D5

D2

D 1

D3

PASS

FAIL

T4

T6

T2

D4

D6

PASS

PASS

PASS

PASS

PASS

FAIL

FAIL

FAIL

FAIL

FAIL

By doing this, we can dynamically and automatically alter the structure of the decision tree in order to work around undesirable tests. The ID3 algorithm provides a means for doing this by allowing the user to assign costs to tests, forcing them to be used as a last resort. For this example, we assign “infinite” cost to T4, thereby forcing ID3 to choose an alternate means of diagnosis. Proceeding in this way, we can iteratively apply ID3 to successive case-based reasoning matrices and submatrices to dynamically accommodate test application demands.

4. Bayesian Networks and Troubleshooting Flow Diagrams

Diagnostic software tools for complex systems can be based on Bayesian network models of the systems. These models capture relationships between components of the system and observations, which are available to determine the defective component. The models are much more expressive than troubleshooting flow diagrams and offer potential for much more powerful diagnostic tools. They are also more powerful than the CBR based tools.

The Bayesian network model consists of nodes and directed edges. Nodes represent system components and observations. There may also be auxiliary nodes that are used to increase model accuracy. Edges indicate causal relationships between the components and the observations. If a given observation receives edges from given components it indicates that failures of the components can be observed by the observation. The nodes are annotated with probabilities. For component notes, these are “prior” probabilities of failure i.e. component failure rate. For observation nodes, these are conditional probabilities that a given observation is present or absent (e.g. test has passed or failed) given that the components connected to it have failed or not. Conditional probabilities indicate the strength of causal relationship between components and observations.

[image: image3.wmf]INCORRECT

PHYSICAL

VALUE

INCORRECT

SIGNAL

FAULT NODE:

•

 PLANT

•

 SENSOR

•

 CONNECTION

•

 COMPUTER

SENSOR

RESISTANCE

Figure 3. Simple example of a system with four components (plant, sensor, connection, computer),

two error messages (incorrect physical value, incorrect signal) and one test (sensor resistance).

Let us look at a simple example of a system consisting of a plant, a sensor measuring some physical value related to the plant operation, a connection and a computer, Figure 3. The observations available to a diagnostician include: two error messages produced by the computer and a test of sensor resistance. One of the error messages indicates that the signal received by the computer from the sensor is invalid. The other error message indicates that the physical value measured by the sensor is out of normal range.

Figure 4. Simple single-failure Bayesian network representing the system from Figure 3.

[image: image4.wmf]INCORRECT

SIGNAL

INCORRECT

PHYSICAL

VALUE

SENSOR

RESISTANCE

PHYSICAL

VALUE

SIGNAL

PLANT

COMPUTER

CONNECTION

SENSOR

Let us now model the simple system and the observations by means of a Bayesian network. We will produce two models for the system. The first model is a simple single-failure model, as seen in Figure 4. This model consists of one node representing all the possible defects and individual nodes for observations. It assumes that one and only one defect is present in the system. This limitation is identical to that underlying the troubleshooting flow diagrams. The other limitation is that all the observations are independent.

A more complex and therefore more powerful model is depicted in Figure 5. It has a separate node for each component and includes also two auxiliary nodes. The auxiliary nodes help in capturing more precisely the interdependence between the components and the observations. The two limitations applicable to the previous model also hold here. However, more information is needed to create this model.

[image: image5.wmf]T4

DEFECT

NODE:

•

 D1

•

 D2

•

 D3

•

 D4

•

 D5

•

 D6

•

 D7

T5

T3

T2

T1

T6

Figure 5. Multiple-failure Bayesian network representing the system from Figure 3.

The availability of information necessary for the design of the Bayesian models is an important issue. The models can be created using data or expert knowledge. Sometimes we only have troubleshooting flow diagram at the outset. We would like to be able to use it to create an initial Bayesian network. Our approach to model development is based on a principle of gradual enhancement of a model starting from a simple single-failure model. At each step of the enhancement new information is needed, but also new functionality is obtained as a result of it.

Let us look at a troubleshooting flow diagram as a source of information for design of a Bayesian network. The diagram leads the user through a sequence of observations to a conclusion about the defective component (i.e. to a leaf node of the tree). At each observation node the outcome of the observation excludes a certain number of possible defects until only a single defect remains. There is no uncertainty in this model about the impact of a given defect on a specific observation. There can be only one conclusion for a given sequence of observations. Thus the flow diagrams are deterministic and single-failure representations of the system diagnosis.

Bayesian networks can express uncertainty of causal dependence of observations on the component defects. This is done by means of conditional probabilities, wherein a number between zero and one represents the strength of the causal dependence. In the networks created from troubleshooting flow diagrams, the conditional probabilities for an observation given a defect, which affects it, will all be zeros or ones. The networks will be single-failure networks and will consist of nodes representing only defects and observations, as shown in Figure 6. The details of the translation of the troubleshooting flow diagrams into Bayesian networks are discussed in a separate publication, [10].

[image: image6.wmf]T1

T2

T3

T4

D7

D5

D2

D1

D3

PASS

FAIL

T5

T6

T4

D4

D6

PASS

PASS

PASS

PASS

PASS

FAIL

FAIL

FAIL

FAIL

FAIL

Figure 6. Bayesian network obtained by translation from troubleshooting

 flow diagram depicted in Figure 1.

In a diagnostic tool based on Bayesian networks, the user enters the available observations and probabilistic propagation algorithms that are executed for the network to produce conditional probabilities of defects given the observations. With each new item of evidence the probabilities of defects are recomputed to reflect the impact of new information. Thus, at each iteration of the troubleshooting we will obtain quantitative information about the likelihood of defects. This information may be used to stop the troubleshooting when we have enough confidence that we have found the defect.

Bayesian network algorithms by themselves cannot recommend the next best observation. In order to provide this capability, the networks have to be augmented with some type of sequencing algorithm. One possibility is an algorithm based on Value of Information (VOI) computation. The algorithm computes, for each unused observation and each defect, the entropy of probability of that defect, given that the result of observation is known. Such an entropy-based approach is similar to the process undertaken by the ID3 algorithm discussed in section 3, [9]. This way the algorithm identifies the observation, which, when performed, will result in the largest change in defect probability, thereby providing a measure of the discrimination capability of the observation.

Providing the ability to combine the cost of observation with discrimination ability can enhance the sequencing algorithm further. One way to do it is by dividing the entropy by cost, multiplied by some weighting coefficient, [11]. Alternatively one could subtract from the entropy the observation cost, also multiplied by some weighting coefficient.

The diagnostic tool based on a Bayesian network with the VOI sequencing algorithm will produce a list of defects, which are ranked by probability, and a list of observations, which are ranked by VOI. The user can accept the network suggestion and perform the top ranked observation or can choose any other observation. When the result of the observation is entered, new lists are computed. The user has full flexibility to choose the observations without losing access to the assistance provided by the tool.

We can represent the sequence of observations recommended by the Bayesian network with the VOI algorithm in the form of a troubleshooting flow diagram. A flow diagram obtained for the simple Bayesian network from Figure 4 is shown in Figure 7. It is different from the original flow diagram from Figure 1, which was used to obtain the network. The reason is that the Bayesian network did not capture the sequence information from the flow diagram, but only the dependencies between the observations and defects.

Figure 7. Troubleshooting flow diagram generated by Bayesian network

from Figure 4 with VOI sequencing.

The flowchart produced by the Bayesian network and the VOI algorithm is minimal with respect to the average path length. The path length is measured in the number of observations between the root observation and the defect. Implicit in this is an assumption that all the observations have the same cost.

In order to reproduce the troubleshooting flow diagram exactly with a Bayesian network, we need to represent in the network the information that determines the ordering of the observations. The factors that determine the order of observations are: defect likelihood, observation cost, and the ability to discriminate between defects. The discrimination ability is included in VOI algorithm, but the likelihood of defects and the cost of observation have not been used to affect sequencing. We can learn these values from the flow diagram using one of the algorithms in [10]. The Bayesian network obtained this way, combined with VOI and cost based sequencing algorithm, will produce sequences of observations identical to those of the original flow diagram.

In our gradual approach to Bayesian network model design, we assume that translation of the troubleshooting flow diagram is only a first step of the model development. After that step the model has to go through several steps of enhancement. The enhancements require access to additional information such as data or expert knowledge or both. If the additional information is available, it is appropriate to use flow diagrams to create only the simplest model, which does not use the sequencing information of the diagram, but only the dependence of observations on defects. The sequencing information is usually not very reliable. See chapter 2.

The information that could be easily added to the simple model obtained from the diagram includes the likelihood of defects and cost of tests. With this information explicitly captured in the model we should obtain a much more reliable sequencing of tests than that of the original diagram. Further enhancement includes: refining the conditional probabilities from the original zeros and ones, and then upgrading the model to a multiple fault model, [3]. See Figure 5.

5. Conclusions

The paper presents practical issues involved in the design of a software tool for diagnosis. The key criteria for an effective tool are accurate and flexible assistance in the diagnosis process, and easy, inexpensive design and maintenance of the tool. We have described three representations used to create diagnostic tools: troubleshooting flow diagrams, case bases and Bayesian networks. They differ significantly in the approach to diagnosis and they produce tools of different characteristics. The flow diagrams are the most natural and most popular way of representing information used in diagnosis. They have been used for many years and are often available as a starting point for design of the two remaining representations i.e. case bases and Bayesian networks. We looked in detail at the issue of converting the flow diagrams to the other representations.

The main reason for considering case bases or Bayesian networks instead of flow diagrams as the preferred representation are the shortcomings of the diagrams. The flow diagrams represent information needed for diagnosis in a direct way and their use is reduced to simple following test sequences as they appear in the diagrams. This simplicity is, however, also a limitation. The user cannot diverge from the prescribed sequence. Creating the diagrams is very time consuming and imprecise. Different experts come up with significantly differing designs. This is because the sequence of tests is supposed to resolve the tradeoffs between defect frequencies, test costs, and the discrimination capabilities of the tests. The flow diagrams become impractical for complex systems. Therefore, typically, many small diagrams are used to troubleshoot a large system. Maintenance of diagrams is very time consuming and rarely done.

The CBR approach alleviates some of the problems of troubleshooting flow diagrams. A seed case base can be created from flow diagrams and then maintained with a relative ease. When combined with decision tree algorithms the CBR approach can approximate the test ordering of flow diagrams quite well. The frequency of defects and cost of test can be expressed more explicitly although not very naturally. CBR diagnostic tools are more flexible than flow diagrams. A test can be dropped from a sequence at the cost of regenerating a decision tree. The complexity of the case based approach grows exponentially with the complexity of the diagnosed system as was the case with flow diagrams, and therefore we must partition the system into multiple case based subsystems. As a consequence, we create a less flexible data representation and more complex maintenance.

Bayesian networks offer the most flexible solution of the diagnostic decision support. They represent the domain in the most direct way by expressing the causal dependencies between defects and observations. They encode the failure rates explicitly in the model and allow expressing uncertainty about the impact of the defect onto the test results. Bayesian models may be time consuming to create from scratch, but a simple form of the model can be automatically obtained from the flow diagram. This model can easily be easily by the process of learning from data. Models of complex systems can be naturally decomposed using hierarchies or an object oriented approach. Test ordering requires, as in the CBR approach, additional sequencing algorithms. These algorithms provide for natural expression of the test cost and quantitative balancing of cost and discrimination capability. Of the three approaches discussed in this paper, the Bayesian model with a sequencing algorithm produces the most flexible and accurate diagnostic tool.

References

[1]
"Electronic Fault Diagnosis: Troubleshooting Flow diagrams and Expert Systems", Raymond Lister. Applications of Expert Systems, Vol. 2, 1989.

[2]
"ICARUS: Design and Deployment of a Case-Based Reasoning System for Locomotive Diagnostics", Anil Varma, ICCBR, 1999.

[3]
"Construction of Bayesian Networks for Diagnostics", Wojtek Przytula and Don Thompson, Proceedings of the IEEE Aerospace Conference, Big Sky, MT, March 19, 2000.

[4]
"Sequential Troubleshooting under Uncertainty", David Heckerman, John S. Breese, Koos Rommelse, Proceedings of the Fifth International Workshop on Principles of Diagnosis, New Paltz, NY, 1994.

[5]
"Integrating Bayesian Networks into Knowledge-Intensive CBR", Agnar Aamodt and Helge Langseth, Papers from AAAI workshop, David Aha, Jody J. Daniels (eds.), AAAI Press, Menlo Park, 1998.

[6]
"Comparing Troubleshooting Flow Diagrams and Bayesian Networks for Dependability Analysis", Andrea Bobbio, Luigi Portinale, Michele Minichino, Ester Ciancamerl. 18th International Conference on Computer Safety, Reliability, and Security, Toulouse, France, Sep. 27-29, 1999.

[7]
"Creating an Advanced Diagnostic Knowledge Base from Existing Troubleshooting flow diagrams: A Case Study", Israel Beniaminy, Gabriel Kanonicz, Raz Neuhaus, AUTOTESTSCAN 99. IEEE Systems Readiness Technology Conference, 1999.

[8]
"Learning Classification Trees", Wray Buntine, Statistics and Computing Journal, Vol. 2, 1992.

[9]
"Learning Efficient Classification Procedures and Their Application to Chess End Games", J. Ross Quinlan, Machine Learning: An Artificial Intelligence Approach, Ryszard S. Michalski, Jaime G. Carbonell, Tom M. Mitchell (eds.), Morgan Kaufmann, 1983.

[10]
"Conversion of Troubleshooting Flow Diagrams into Bayesian Networks", Wojtek Przytula and Don Thompson, in preparation.

[11]
"Automatic Construction of Decision Trees from Data: A Multi-Disciplinary Survey", Sreerama K. Murthy, Data Mining and Knowledge Discovery, Vol. 2, No. 4, 1998.

*awojtek@hrl.com; phone 1.310.317.5892; HRL LLC, 3011 Malibu Canyon Road, Malibu, CA 90265; **bthompson@pepperdine.edu; phone 1.310.506.4280; Pepperdine University, 24255 Pacific Coast Hwy, Malibu, CA 90263
