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Abstract—Bayesian networks have been very useful as models for computerized diagnostic assistants, as evidenced by numerous citations in the literature. However, a number of important practical problems in the application of Bayesian networks to diagnostics have still not been properly addressed. One of these is the evaluation of Bayesian network models. The quality of a model determines the quality of diagnostic recommendations obtained using that model. Thus, comprehensive analysis and evaluation of  Bayesian models provides a firm basis for estimation of performance of diagnostic tools based on these  models.

Our approach to Bayesian network evaluation relies on the use of Monte Carlo simulation and the efficient visualization of simulation results. This technique allows us to identify the critical elements of Bayesian models that are responsible for incorrect diagnosis. In this way we can point to components that lack strong observations and therefore cannot be diagnosed convincingly. We can identify strongly coupled components that implicate each other and therefore cannot be effectively separated in diagnosis. We can also identify components whose failures are consistently misinterpreted as failures of other components.
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1. Introduction

Diagnosis of component defects in complex systems is very difficult. Therefore, software support tools have been proposed to assist humans in the task. The tools utilize a variety of techniques ranging from rule based, to case based and model based [1], [2], [3], [4]. 

In recent years diagnostic assistants built around Bayesian Networks  (BN), also called belief networks, became especially popular [5], [6], [7], [8]. These networks are a form of graphical probabilistic model that encodes dependencies between system components and diagnostic observations in a directed graph. The nodes of the graph are assigned probabilities, constituting a joint probability distribution over the system components and diagnostic observations [9], [10]. The availability of the joint probability distribution makes it possible to compute the probability of a component defect given the outcomes of diagnostic observations.  

There are several commercial and research tools designed for BN model authoring and testing.  Among the most popular of these tools are Hugin (http://www.hugin.dk/), Netica (http://www.norsys.com/networklibrary.html), and GeNIe (http://www2.sis.pitt.edu/~genie/). These programs also include libraries of routines for computation of probabilities as well as learning algorithms, facilitating the easy design and authoring of BN models for diagnostics. The information necessary to create the models can be acquired from experts on system diagnostics and design, as well as system technical documentation. Models can be developed entirely from repair records or one can simply combine expert knowledge and data in the model development.

All BN authoring tools known to us have rather limited support of testing and evaluation of BN. These two tasks are of great importance in the practical application of BN models in diagnostic assistants, because prior to the use of the BN model, it has to be checked carefully for correctness and its diagnostic performance has to be thoroughly evaluated. A poor performance of the diagnostic assistant can be attributed to two main causes: low fidelity of the model or inadequate support for diagnosis in the modeled system. In the former case the model does not correctly encode system components and their diagnostic observations. Such errors can result from the mistakes of the experts or from the mistakes made during the model entry into the authoring tool. In the latter case, the evaluation results can be used to identify the diagnostic limitations of the system, e.g. missing or improperly located sensors.

Conventional testing of BN models relies on diagnostic cases containing information on outcomes of available observations and on performed repairs. These cases may come from repair records or from experts and are often incomplete, i.e. not all of the observations used during diagnosis are provided, or they may be erroneous, perhaps because they come from a diagnosis performed by an inexperienced technician. Diagnostic experts are often biased in their selection of cases for BN testing because they best remember the most recent or most unusual cases. As a result, conventional testing is often unreliable and provides a poor coverage of BN components and observations.

The automated method of evaluation of BN models for diagnostics described herein provides guidance for additional testing. The method produces a comprehensive characterization of the diagnostic performance of the model, allowing us to identify components and observations that are responsible for errors in diagnosis. Experts can use this information if they need to focus additional testing on parts of the model that contain the identified components and observations. The goal of testing is to determine if these parts of the model correctly reflect the system’s reality and whether the model requires modification. If the model is correct, then the evaluation results can direct the system designer to those parts of the system that should be redesigned for improved diagnosis. 
The evaluation method uses Monte Carlo simulation to automatically generate diagnostic cases that uniformly cover all the parts of the BN model. The evaluation is comprehensive, fully controllable and presents results in the form of sample graphs and matrices that pinpoint, which components and observations are responsible for deficient diagnostic performance. 

The main contributions of this paper are the BN evaluation method, its software implementation, and the application of the evaluation results to BN model testing and diagnostic system redesign. The method utilizes a novel Monte Carlo sampling technique for automated generation of diagnostic cases that produces a comprehensive characterization of the diagnostic performance of the model. In addition, we provide advanced visualization techniques based on three types of graphs: complete sampling graphs, 2-D color maps of averaged samples and 3-D graphs of averaged samples. These graphs assist in identifying model parts that are responsible for poor diagnostic performance or modeling bugs. They may also point to the parts of the system that are not designed for adequate diagnosis.

The current literature on the use of BN models for diagnostics, is very broad. The BN are applied in medicine, manufacturing, power generation, transportation, etc. Examples of the diagnostic applications can be found in such works as [5], [6], [7] and [8]. However, there are very few results available on testing and evaluating the performance of Bayesian Network models. There are two notable works that reflect on related aspects of model evaluation process [11],  [12].

In [11] is presented a discussion of diagnosability by  Causal Nets (CN). CN models are related to BN, however they are based on logic not probability. The diagnosability measures are also closely related to the results of our BN evaluation. These measures are commonly used in the field of testability. They are very suitable for testing of digital circuits and carry over very well to the logic based CN. They are however not directly applicable to our probabilistic models.

The Bayesian assessment of models described in [12] applies to a very broad class of models. The authors used Bayesian techniques to evaluate such models as, for example, neural network based classifiers. They proposed a novel way to produce expected utility distributions for the models.  In diagnostic BN models utilities can be introduced in a very natural way by expanding the BN to an influence diagram, in which decision and utility nodes are added to the BN chance nodes. The evaluation of the diagnostic influence diagrams is a subject of our upcoming paper, [13].

The paper consists of five sections. This introductory section is followed by section two which is devoted to the discussion of the application of BN to diagnostics. Sections three and four contain the main results of the paper. In section three we describe the evaluation method. Then, in section four we concentrate on evaluation results, their visualization and their application to model debugging. The conclusions of the paper are gathered in section five.

2. Bayesian Networks Diagnostics

In this section we discuss BN models and their application to diagnostics, illustrating the discussion with a simple example of a diagnostic problem. We describe a system used in the example and develop a BN model for it as well as point out some of the issues involved in the practical development of BN models.

2.1 Diagnostic Problem

We are interested in the diagnosis of complex systems. These systems consist of multiple subsystems, which in turn encompass multiple components, namely, the smallest line replaceable units (LRUs). The objective of diagnosis is to find which component or components, in case of multiple defects, are responsible for system malfunction. 

The defective system components may be in one or more defective states representing different modes of component failure. The remaining components operate normally and are considered to be in an ok state. The diagnosis of the defective components is based on observations representing various forms of information about the health of the system and its components. Examples of observations include symptoms of a defect, built-in-test (BIT) and other test results.

The diagnosis of a complex system with multiple defects is very hard because it requires an expert with vast experience and a good understanding of the system. The experience provides the expert with information about frequency of specific component defects as well as an understanding of the system that enables the expert to conclude which subsystems, and eventually which components, are defective given the observations at hand. 

2.2 Bayesian Network Models

It is very desirable to develop software tools that can assist humans in diagnosis. There have been many technical approaches suggested for such tools, including rule-based systems, case based systems and model based systems. It is not our objective to compare these different approaches in the paper since the recent literature of the subject recommends the model-based approaches most frequently for complex systems. Our particular approach is based on graphical probabilistic models called Bayesian networks (BN) or belief networks, comprising a form of combining graph theory with probability theory. They capture dependencies between the components of the system as well as the dependencies between the components and observations, constituting a representation of joint probability distribution over the components and observations. 

The diagnostic assistant queries the BN for the probability of a component defect given known observations. Subsequently, the probability computations are done with help of a library of probabilistic routines.  Several commercial and research tools for BN are available from such vendors as Hugin, Netica, and GeNIe. These tools are primarily used for BN authoring and testing, however their libraries of routines can also be used to build custom decision support tools, such as diagnostic assistants. The focus of our paper is BN models. Thus we will simply assume that these tools and libraries of routines are available for model entry and testing as well as our evaluation algorithms.

Diagnostic BN models can be created using design documentation and the knowledge of diagnostics experts. Furthermore, there exist learning algorithms which allow us to create the BN entirely from repair records or by refining an approximate model created from documentation and expert’s knowledge with the data from repair records.  Our model evaluation methodology is applicable to BN’s independent of the way in which they were created. However, our software works only with networks created using GeNIe, Hugin and Netica. 

BN models for diagnostics, as any other system models, are only an approximation of system behavior, yet they focus on representing aspects of the system that are important in the diagnosis of system defects. The model designer faces a trade off between model complexity and accuracy. Model evaluation is intended to help the designer in striking a balance between the two objectives as well as providing insight into the diagnostic properties of the system itself. The inability to diagnose some system defects may result from an inaccurate model, e.g. some of the observations have not been included, but it can also be caused by a poor system design, which does not allow separating some of the defects from each other.

BN models are a marriage of acyclic directed graphs with associated probabilistic parameters.  The direction of the graph links can be viewed as a direction of causal or temporal dependence between the node of the origin and 
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Figure 1. Bayesian Network for Example of Car Diagnostics

the node of destination.  See the example BN in Figure 1. The nodes of a BN are assumed to have two or more discrete states that are exhaustive and exclusive.

In the diagnostic BN we have three categories of nodes: component nodes, observation nodes and auxiliary nodes. The component and observation nodes represent, as the names indicate, the system components and the diagnostic observations respectively.  The remaining nodes are used for the sake of convenience and clarity of modeling and may stand for subsystems, system functions, modes of operation, etc. In BN evaluation we will focus on component and observation nodes.The states of the component nodes represent the diagnostic states of the component, which in the simplest case are the two states: defective and ok. If it is appropriate to distinguish between different modes of failure, the node may have more states, e.g. for a node representing a valve, say, with states: stuck open, stuck closed, ok. Similarly, the states of observation nodes represent the outcome of the observations, e.g. for a test node with the states fail and pass.  Here also more than two states are possible.
The probabilistic parameters of the BN are associated with their graphical nodes. For the root nodes of BN, i.e. the nodes without parents, the parameters are the prior probabilities of their states. In fact, most of the component nodes are root nodes.  The parameters for nodes with one or more parents are the conditional probabilities of their states given the states of their parents. All of the observation nodes have parents, which are typically component nodes. The parameters, in this case, are probabilities of observation outcome given all the combinations of the defects of their parent component nodes.

2.3 Simple Diagnostic Example and its Bayesian Network Model

In order to illustrate the BN models for diagnostics and their evaluation, we will use a specific example of a simplified car diagnostics problem. In our example, we assume that we are interested in diagnosing only seven components and their associated conditions: battery charge level, cable connections, fuel filter, fuel in tank, fuel pump, induction coil and starter. For this model we have the following eight observations at our disposal: clicking sound, engine cranking, engine working, fuel gauge, fuel in carburetor, lights working, main cable loose, voltage on coil.

The structure of our BN for simplified car diagnosis is shown in Figure 1. The network consists of sixteen nodes. In addition to one node for each component (blue nodes) and observation (yellow nodes), we have also two auxiliary nodes (white nodes): current flow and fuel supply. Each node in our example BN has only two states.  The prior and conditional probabilities for the network (not shown in Figure 1) have been defined arbitrarily to illustrate our method.

Our BN is to be used in a software assistant for car diagnosis. The assistant will incorporate results of observations performed on the car and will produce a list of the seven component defects along with their probability of occurrence. The probability will be computed given outcomes of the known observations. If no observations have been made the assistant will return prior probabilities of the defects. The computations will be made using the libraries of probabilistic routines such as those found in standard BN modeling tools. Figure 2 shows an example of the output for our diagnostic assistant problem, as obtained using the GeNIe authoring tool and the Smile library of routines. Figure 2 shows the ranked list of component defects, here called targets, with their probabilities, along with a list of available observations. The defect probabilities were computed given the results of the observations listed at the bottom. The observations are: Engine Working – No, Engine Cranking – No, Clicking Sound – No. 
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Figure 2. Diagnostic Assistant Output Produced for our Car Diagnosis Problem in GeNIe

3. Evaluation of Models
In this section we discuss the testing and evaluation of diagnostic BN models as well as details of our BN evaluation method. 

3.1 Testing and Evaluation of BN Models

Before BN models can be used in software tools for diagnostics, they have to be extensively evaluated.  The goal of the evaluation is to determine how well the models diagnose defective components and how often the models incorrectly implicate non-defective components. 

A conventional evaluation of BN models uses a limited ad hoc testing procedure based on obtaining a set of benchmark cases, for which a correct diagnosis is known.  Each case consists of a list of observation outcomes and a list of defective components known to generate the given observation outcomes. The cases may have been acquired from diagnostic records or may have originated from an expert. Using these benchmark cases, the BN is then queried for recommended defective components, and the quality of the model is determined as a function of how well the recommendations agree with the known actual defects. 

Typically the number of available benchmark cases is very limited and the quality of the cases depends strongly on their origin. Cases obtained from experts may include only the most recent, unusual or memorable cases, whereas repair records for some components or combination of defective components do not always exist, and when they do they are often incomplete – lacking the full list of observations and possibly omitting some defects (especially for the cases where multiple defects are present at the same time).  In short, the selection of benchmark cases is driven by their availability, not necessarily because they represent a complete set or even a characteristic sample of cases. For these reasons, the conventional evaluation of the BN models is never exhaustive and almost always of limited value. The true test of the model takes place after the diagnostic tool is made available for practical use in the field.

Our evaluation method is intended to assist conventional testing by providing extensive information about the expected performance of the model in diagnosis. It points to the parts of the model that are responsible for most of the diagnostic errors and identify changes that could improve model performance.  However, the diagnostic errors that arise during this evaluation process are not always the result of a bug in the model. Indeed, the model may correctly reflect a shortcoming of a system design.   

One important feature of our evaluation method is that it is fully automated and does not require the previously mentioned diagnostic cases. It creates its own cases in a way that guarantees comprehensive coverage of the diagnosed system and results in a complete evaluation of the model. The method can be used without change for BN created from data or from expert knowledge. By using our evaluation method we can shorten the time from design to practical application of the diagnostic tool.

3.2 Bayesian Network Evaluation Algorithm

We make two assumptions about the BN in order for our method to be applicable.  First we assume that nodes are labeled as ”components”, “observations” or “auxiliary” nodes. Second we assume that a total temporal ordering of the nodes is known.  If the arcs in the model are interpretable as causal arcs (as is commonly the case for ease of BN construction), then the temporal ordering can be given by any topological sort of the network structure, i.e., by any ordering such that if node X is ordered in time before Y then Y is not an ancestor of X in the BN.  When the arcs in the BN are not interpretable as causal arcs, the ordering must be specified independently of the BN model.  We assume in the remainder of the paper that a total ordering over all nodes is simply specified a priori; however, in fact the relative temporal ordering between nodes X and Y is only truly necessary if X is dependent on Y given all nodes that preceded X and Y in the temporal ordering. This fact can be used to minimize the amount of temporal information that is required. The rest of this section is devoted to the description of our method for BN evaluation. 

Our BN evaluation algorithm consists of three major steps:

1) Defect Propagation step

2) Diagnosis step

3) Visualization step

In the Defect Propagation step we assume that one or more components is/are in the state defective and the remainder are in state ok. For the given set of defective components, we use standard BN inference to determine the probability distribution over the observations. We then sample this probability distribution to predict a likely set of observations that would occur if only this set of components was faulty. The components are systematically assigned to be defective, first one-at-a-time, then two-at-a-time, followed by triples and so on. We stop when the prior probability of occurrence of the component set (which can be calculated from the BN, again using BN inference) drops below a certain minimum threshold value.  In summary, the Defect Propagation step results in a set of likely observations for a given set of defective components, and it consists of the following three operations:

Defect Propagation Step:

1. Select a set C of one or more components.

2. In the BN, set the states of C to defective, and set the states of the remaining component nodes to ok.

3. Determine the state of the observation nodes using Monte Carlo simulation:

3.1. Find the next node in the list of temporally ordered nodes,

3.2. Using BN inference, calculate the posterior distribution of that node given the evidence so far.

3.3. Determine the state of the node by Monte Carlo sampling of its posterior distribution.

3.4. Stop when states of all nodes have been determined.

The Defect Propagation step is followed by the Diagnosis step. This step amounts to propagation of probabilities in the reverse direction – the diagnostic direction. Here we assume that states of the observations are known (given by the Defect Propagation output), and we compute the posterior distributions of component nodes. The Diagnosis step consists of the following two operations:

Diagnosis Step:

1. Assume the states of all the observation nodes to be those determined in the Defect Propagation step.

2. Using BN inference, compute the posterior probability for all the component nodes (not only the nodes selected as defective in the Failure Propagation step) given the states of the observation nodes

The states of observations in the Defect Propagation step and the states of the components in the Diagnostic step are obtained by sampling. Although the probability distributions obtained each time for the same component defects are identical for each iteration, the sampling of these distributions will typically yield somewhat different configurations of observations each time that the computation is performed. In order to account for the variability we need to perform the two first steps many times for each specific set of defective components selected. The components may be selected systematically e.g. each component node separately, then all pairs of component nodes etc. or randomly – according to the probability of occurrence of the defect. In the description of our method we have used the systematic selection, guaranteeing that all the component defects are sampled equally frequently and that our results cover all of them thoroughly. The random selection of components leads to the coverage that is proportional to the likelihood of occurrence of the component defects. This selection is more representative of the reality of BN usage in the diagnostic tool, but requires a large number of samplings in order to guarantee that even the least likely component defect occurs sufficiently often in the data. Using the systematic method of selecting components, however, one can still account for the likely frequency of occurrence by observing the prior distribution over the components and weighting their results accordingly.

The third and final step of BN evaluation is the visualization step. It is performed when all the computations for the first two steps are completed. In this step we format the results from the previous steps so that they can be easily interpreted and analyzed. The outputs of this step are:

· a graph of  probabilities of component defects – referred to as the sample graph,
· 2-D and 3-D matrices of averaged probabilities of component defects.
The Visualization step is discussed in detail in Section 4.  

Our evaluation method can be used for a BN model applied to any decision support problem, not only diagnosis. The only assumption we make about the BN is the labeling of its nodes as targets, observations and auxiliary. In the description we assumed that the nodes have discrete distributions, but our method is not limited to discrete networks. It can also be used for networks with continuous and mixed (both continuous and discrete) distributions.

4. Visualization and Analysis

 In this section we describe the visualization of the BN evaluation results. The results are shown in a form of a sample graph, 2-D and 3-D matrices, illustrated by our car diagnosis example.  We also explain how the graph and the matrices can be used to interpret evaluation results.

4.1 Sample Graph 

The sample graph is the most complete representation of the output of our evaluation algorithm. It captures in a single graph the probabilities of all the component defects obtained for each iteration of the Monte Carlo sampling. To make the interpretation of the results easy we encode the results both in color and in location on the graph. Figure 3 shows the sample graph for Figure 1.
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Figure 3. Sample Graph for Bayesian Network Model for Car Diagnosis Example.

This graph was generated assuming that each component node was set to defective 100 times. During each of these 100 iterations, we generated a set of likely observations and retrieved the posterior probabilities of all component defects, given the set of likely observations. After performing this 100-fold collection on each individual fault, we then set the two most likely pairs of components (Fuel-in-tank/Battery Charge and Fuel-in-tank/Fuel Filter) to defective simultaneously and generated observations for these pairs.  Thus, we have generated a total of 900 cases.

The complete graph provides a pictorial representation of all of these cases. Each point on the x-axis of this graph corresponds to a single case, and the y-axis denotes the posterior probability values for all component defects or select pairs of defects in the network.  If a given component was part of the set of nodes that were set to defective in the simulation, then its posterior probability is shown as a positive value i.e. in the upper half of the graph; whereas the posterior of the component that was not assumed to be defective is shown as a negative value, i.e. in the lower half of the graph.  The cases are ordered on the x-axis from the left to the right so that the cases for the nodes that are most likely to be defective come first followed by the less likely cases.  The gray line indicates the prior probability of each component defect or pair of defects (scaled as a proportion of the largest prior).  Thus, the graph gives us a complete view of the diagnosis when various defects or pairs of defects are present.  The top half of the graph shows probabilities of the defects of components, which are assumed in the simulation to be defective. A quick scan of the bottom half of the graph tells us which other nodes can be implicated when a particular defect is present.  It also gives us specific information about the possible discrete levels that each defect’s posterior probability can take.

In our automobile diagnosis example, we can see immediately that the defects “Fuel Filter” and “Fuel Pump” very frequently implicate each other, and both occasionally implicate the “Induction Coil”, which in turn occasionally implicates each one of them. These symmetrical implications are caused by the fact that the components share observations in the model.  Each of them can cause the engine to stop working, whereas “Fuel Filter” and “Fuel Pump” impact the access of the fuel into the carburetor. If our model perfectly reflects reality, then we will not be able to distinguish between these three defects unless we add some new observations that help us separate them.

One can also see that while the “Cable Connections” defect strongly implicates the “Battery Charge Level” defect, the converse is not true.  This happens because, while both of these components impact the model in similar ways, a drained battery is much more likely to occur than a loose cable connection.  Thus, when a cable connection is defective, we may misinterpret it as the dead battery, but not the converse.  From this information, one might conclude that we need to add to our model a strong test to 

distinguish between the defects of these two components e.g. the voltage of the battery
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Figure 4.  2-D Matrix for Bayesian Network Model for Car Diagnosis Example.

4.2   2-D Matrix

The sample graph of Figure 3 displays the posterior probabilities of component defects for all the state samples of the observations. This includes multiple samples obtained assuming the defectiveness of a specific component or a set of components. In Figure 3 we display these results from the 100 samples for each component or selected pairs of components. The posterior probabilities of observations, which were obtained assuming a specific defective component, are each the same each time. However, the states of observations are obtained by Monte Carlo sampling of the distributions and may differ from sample to sample. Therefore, the posterior distributions of component states may be different for each sample. Thus, it would be very informative to examine posterior probability averages across the samples obtained, assuming specific components or sets of components to be defective. These averages are the focus of our attention in the 2-D and 3-D matrices.

The 2-D matrix for our example network is shown in Figure 4. Both the rows and the columns of the matrix are labeled with the names of components or component pairs. The top row of the matrix represents the prior probabilities of occurrence of the defects of the components or component pairs. The remaining entries of the matrix represent the average posterior probability of the component or the pair of components, given that the defect(s) named in each column has occurred. The values of probabilities are expressed by color-coding, from white, i.e. lowest value, to yellow, and then to red, i.e. the highest value (see in Figure 4 the scale to the right of the matrix).

Let us examine the entries in a given column of the matrix. Each column is labeled by the component or pair of components (see the number below the matrix) that were assumed to be defective in the simulation. Let us select a specific matrix entry in the column. This entry corresponds to some row labeled by a component defect or pair of defects (see in Figure 4 the number and the name to the left of the matrix). The matrix entry contains an average posterior probability of the defect of the row-component obtained assuming that the column-component is defective.

The diagonal entries of the matrix contain the average probability of a component defect obtained assuming that the component is defective i.e. probability of a “true defect”. The off-diagonal entries contain probabilities of “false defects”. For a perfect model, capable of perfect diagnosis, the diagonal entries would be all equal to one and the off-diagonal entries would all be equal to zero.  In the 2-D matrix we arrange the components in rows and columns so that the elements on the diagonal are sorted from the largest (left-top corner) to the smallest (right- bottom).  

Let us now analyze the 2-D matrix in Figure 4. In general, we are more concerned about detecting defects that are very likely to occur, i.e. those with high prior probability, than those that are unlikely. A quick scan of the top row (the priors’ row) of the matrix allows us to identify the defects that may cause diagnostic problems. These will be represented by high prior probabilities and will be located near the right end of the row.  In our example, these are nodes 7 and 8 (“Fuel Filter” and “Fuel Pump”, respectively). These two nodes implicate each other, which shows up as significant entries, i.e. dark yellow, located in the matrix symmetrically along the diagonal. We can also see the asymmetric implication of  “3. Battery” by “6. Connections”. Even the relatively minor implications are evident in this graph, for example, the cross-implication of “7. Fuel Filter”, “8. Fuel Pump” and “4. Induction Coil”.

The 2-D matrix representation is very concise compared to the sample graph. However, showing only average values has its price. We are not able to distinguish between a component that implicates another component many times at a low level (an acceptable situation) versus one that implicates another component fewer times but at a high level (less desirable situation). This information must be retrieved from the complete graph.

4.3 3-D Matrix

The 3-D matrix depicts the same data as the 2-D matrix, only instead of viewing the probability values using a color-coded scale, we present a full perspective 3-D map of the data.  This representation has many of the advantages of the 2-D map but also allows us to get a better feeling for the relative values of the probabilities than is possible with the color scale.  The drawback to the 3-D matrix is that it can be difficult to interpret with just a single angle of view.  It is most effective when it can be rotated and viewed at several angles to see around walls or spikes that might be present in the data.
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Figure 5.  3-D Matrix for Bayesian Network

Model for Car Diagnosis Example.

The 3-D matrix for our car diagnosis example is shown in Figure 5. The color scheme reflects which component is defective and does not indicate value, since the heights of each column depict that information. We use the same color for all the probabilities of component defects corresponding to a single column in the 2-D matrix representing the car diagnosis example.

Furthermore, we have tested our method on several large BN used in real-life diagnostic tools. The networks are much larger than the illustration example of car diagnosis. They have been developed using expert knowledge combined with diagnostic records and represent large subsystems of a complex transportation system. The Large Network #1, shown in Figure 6, captures a subsystem consisting of approximately 50 component defects and 120 observations. This network represents a subsystem that can be very reliably diagnosed.  The 3-D matrix has very high values along the diagonal and the off-diagonal values are largely negligible.

[image: image7.png]


Figure 6.  3-D Matrix for Bayesian Network 

Model for the Large Network #1.

A 3-D matrix for a different subsystem is shown in Figure 7. The network is a bit smaller than that of Figure 6.  It also represents a real-life model based on a BN diagnostic assistant. However, the diagnostic properties of this subsystem are much different. The smallest probability values on the diagonal drop below the off-diagonal probabilities. This is an obvious indication that the diagnosis of this subsystem will be burdened by many mistakes, making it impossible to separate many of the true defects from the false defects.
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Figure 7.  3-D Matrix for Bayesian Network

Model for the Large Network #2.

The results of BN model evaluation for this subsystem have been reviewed with the experts who helped develop the model. We were able to determine that the model was correctly reflecting the subsystem. The conclusion that was reached as a result of our evaluation is that we need additional observations in order to make the defect separation possible.

4.4  Software Implementation of the Evaluation Method

Our software implementation for this evalution method is a Windows executable program written in object-oriented C++ code.  The program takes in a BN model file of the decision domain. The file can be in .dsl (i.e. GeNIe), .net (i.e. Hugin) or .dne (i.e. Netica) format. It produces the three graphical representations of the model performance: sample graph, 2-D matrix and 3-D matrix.  For the Large Network #1 shown above in Figure 6, generating 100 records for each single component (over 4000 records total) takes about 20 minutes on an Dell Dimension 8100 computer with Pentium 4, 1.7 GHz processor.

We were able to exploit certain structural features of our networks to speed up simulation.  The most costly part of the process is repeatedly performing the BN inference, which must in general be performed after each observation node’s posterior distribution is sampled and that node is set to a particular state.  In fact, structurally our networks were such that all observations were independent of each other when all components nodes were in a fixed state.  Thus, after the states of the components were fixed, we could update the posteriors of each observation one time and sample all their posteriors independently, thus reducing computation time roughly by a factor of N, where N is the number of observations. The program is designed to work for networks of arbitrary structure, but it can speed up computation if the BN structure makes it possible.


5. Conclusions

The paper describes an automated method for evaluation of BN models for diagnostics. The evaluation is very comprehensive and uniformly covers all parts of the BN model by an exhaustive Monte Carlo sampling process. We present the details of the algorithm and its implementation in software and explain how the results of the evaluation can provide guidance for model testing. We recommend testing those parts of the model that are responsible for poor diagnostic performance. 

The test results of the parts of the model identified by means of evaluation, may confirm that the model is correct despite the unsatisfactory diagnoses. In this case the evaluation results can be used as an indication of the shortcomings of the system itself. The design of the system is such that it is impossible to diagnose some of its parts. Thus, the evaluation can provide feedback for the system designers.

The BN evaluation method has been presented in the context of diagnosis.  However, the method is independent of any particular application of the BN models. It can be used in any decision support application based on those BN models in which the nodes can classified as belonging to three categories. There need to be target nodes, about which we need to make decisions (e.g. component defects), and information nodes, which determine the circumstances of the decision (e.g. observations). The remaining nodes are considered auxiliary nodes. 

In many applications, including diagnosis, it is desirable to extend the decision support beyond simple ranking of target nodes according to their marginal probability. For example, for an inexperienced diagnostician it may not be sufficient to obtain the probability of a component defect. He or she may need an explicit recommendation as to which components should be repaired. To provide this type of support it is necessary to extend the model beyond a simple Bayesian network in the form of an extended model, where each diagnosed component would have to be modeled by two additional nodes: a cost and a decision node. This type of graphical probabilistic model is called influence diagram. Influence diagrams are also needed to extend the diagnostic support to sequential diagnostics. In sequential diagnostics the software assistant needs to recommend which test to perform next and when to stop testing. Our basic approach to BN evaluation can be naturally extended to influence diagrams. We describe the evaluation of influence diagrams in an upcoming paper [13].
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