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Abstract. Neural Networks are typically thought of as black boxes trained to a 
specific task on a large number of data samples. In many applications it becomes 
necessary to “look inside” of these black boxes before they can be used in practice.  
This is done in case of high risk applications or applications with a limited number 
of training samples. This paper describes several techniques of analysis of trained 
networks, which can be used to verify that the networks meet requirements of the 
application.  The two main approaches advocated are sensitivity analysis and 
analysis by means of graphs and polytopes.   The algorithms developed for the 
neural network analysis have been coded in form of a Matlab toolbox. 
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1 Introduction 
 
Neural Networks have been used as an effective method for solving engineering 
problems in a wide range of application areas. In most of the applications it is 
essential to be able to ensure that the networks perform as desired in real-life 
situations. This is typically done by providing a rich training set that represents 
well the data encountered in practice, and by adhering to proper training and 
testing procedures. In some applications there exists an additional need to verify 
that the network has been properly trained and will behave as desired. This need 
may be caused by a relatively small training set, as a result of high cost of data 
acquisition, or very high liability in case of system error. One example of such an 
application is deployment of airbags in automobiles. Here, both the cost of data 
acquisition (crashing cars) and the liability concerns (danger to human lives) are 
very significant.  The paper proposes a range of techniques for analysis and 
evaluation of trained neural networks. These techniques provide a clear and 
compact interpretation of how individual inputs affect the network output, how the 



 
 

network partitions its input space into class regions, and how well it generalizes 
beyond the training samples. 
 

Our techniques are intended to be used jointly to provide a clear picture of the 
trained network. We present two basic methods of analysis: sensitivity analysis and 
graph analysis.  They are described briefly in the two sections that follow this 
introduction. Our work is captured in a collection of approximately 50 algorithms, 
which have been coded as a library of routines - a toolbox - for Matlab, a 
commercial package for mathematical computations. They have been tested on a 
large number of networks proposed for engineering applications and provided a 
very good insight into the networks. 
 

The techniques are applicable to all multilayer neural networks without feedback, 
trained as classifiers. However, for simplicity of presentation, we will assume that 
the networks have only one output and that both the input and output values have 
been normalized to a [0, 1] interval. We will view the neural network as a 
multivariate function N, which maps input vector x ∈ X, X - network input space, 
into y ∈ Y, Y = [0,1]  - network output space, such that y = N(W,x), where W is a 
parameter matrix (the weight matrix). The parameter matrix is fully defined once 
the network is trained. We will also assume that the single network output is used 
to distinguish between two classes of inputs, so that output values in the interval 
[0.5, 1] represent one class, called the high-value class, and the outputs from the 
interval [0, 0.5) represent the other class, called the low-value class.  Thus, the 
boundary between the classes in input space is formed by all the points that map 
into output value 0.5.  This boundary is determined by the network in the training 
process.   
 

2 Sensitivity Analysis 
 
This class of algorithms is characterized by observation of changes of network 
output, including crossing of the threshold 0.5 value, as a result of varying the 
input values around selected critical points, along particular lines and line 
segments and on selected planes in the input space. The choice of the critical 
points as well as the 1-D and 2-D regions is made using several sources of 
information. They include: training data, e.g. input points from the training set, a 
priori statistical information about the distribution in the input space, e.g. 
centroids, clusters, critical outliers etc., physical properties of the problem, and 
finally analysis of the network function itself.  The discussion of the choice of the 
points and regions in the input space other than by the analysis of the function is 
beyond the scope of this paper.  
 

There are several results known in literature, which are related to some of the 
sensitivity algorithms discussed in this paper.  See Goh and Wong, 1991, as well 
as Oh and Lee, 1995.  They are, however, rather fragmentary in their analysis of 



 
 

neural networks and therefore mostly ineffective. Our experience with analysis of 
real networks points to a need for more comprehensive and multifaceted approach 
akin to that presented in this paper.  
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Figure 1. Well-trained and well-generalizing network 

 
 
The neural network function is a highly nonlinear one defined over a region of 

high dimensionality. As a result of training it is forced to take on high values (close 
to 1) near the points from one class of inputs and low values (close to 0) near the 
other class. In the domain outside of the training points it transitions from high 
values to low, and it contains the boundary separating the classes. The 
generalization properties of the network depend greatly on the behavior of the 
function near the training points and in the transition domain.  
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Figure 2. Insufficiently trained network 



 
 

 
 

Figure 3 shows an overtrained network with poor capability for generalization. 
The slopes are very steep and high plateaus very small. The network created small, 
separate islands for clusters of points from high-value points. Small perturbation of 
the input values for some of these points leads to an abrupt change in the 
classification. 

 
 

The algorithms used in sensitivity analysis apply Monte Carlo methods, various 
approximate measures of variability of the function value, and visualization 
techniques.  Here, for illustration, we will show only how some results of the 
analysis highlight the characteristics of trained networks, see figures 1, 2 and 3. 
These figures present 2-D projections of the neural network function onto planes 
identified as important in the process of analysis. Each figure shows a different 
network developed for the same problem using the same training set. Figure 1 is 
typical for well-trained and generalizing network. The network function transitions 
smoothly and gradually from a high plateau of one class to a low plateau of the 
other class. Figure 2 presents a network that has not been trained sufficiently. Here 
we see a “hesitant” transition: steep slopes and oscillation. 
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Figure 3. Overtrained and poorly generalizing network 

 
 
3 Convex Polytopes and Graph Analysis  
 
This category of algorithms helps describe the location and shape of the boundary 
between the input classes of the network using convex polytopes, which are 



 
 

generated from training exemplars.  Convex polytopes in input space are of interest 
because of the following theorem: 
 
Theorem 1:  Let C be a convex polytope in the input space of a neural network 
having one output neuron.  Then N(C) = [a,b]. 
 
Proof:  Since N is a continuous function, it maps the connected set C into a 
connected subset of [0,1], which is therefore an interval (or a single point).  See 
Royden, 1968.   
 

We are interested in convex polytopes belonging wholly to one or the other input 
class.  Such polytopes help define the structure and boundaries of these input 
classes.  We find them as follows: given the set, E, of training exemplars of a given 
input class, we select a maximal subset of exemplars whose convex closure is also 
of the same input class.  That is, in the case of low output, for example, we select a 
vertex set C = {x1, x2, …, xm} so that both 0 < N(xi) < 0.5, for all i, and 0 
<N(Σλixi) < 0.5 for all {λ1, λ2, ..., λm} where Σλj =1, 0 < λj < 1 for all j, and so that 
no other vertices in E can be added to C while preserving these properties.  Figure 
4 depicts five such sets in 2-D. 

 
In order to find such convex polytopes, we start with a related structure: that of a 

graph in input space.  The vertices in such a graph are training exemplars which 
belong to the same input class.  Two vertices of the graph are joined by an edge if 
all points on the line segment between them also belong to the same class.   

 
 

 
Figure 4.  Maximal Convex Polytopes in 2-D 
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In particular, we are interested in maximal “complete” graphs.  A complete graph 
has the property that every pair of vertices is joined by an edge, (Even, 1979).  It is 
called maximal if no additional vertices (exemplars) can be appended without 
spoiling the completeness property.  From the maximal complete graph we obtain 
the convex polytope as a convex closure of the graph’s vertices. All the points of 
the polytope belong to the same class as the vertices if the network function N(x) is 
sufficiently smooth and close to linear in the vicinity of the polytope. 

 
 

 
Figure 5. Complete Graph Built on Six Exemplars in 3-D. 

 
 
Figure 5 depicts a three dimensional version of such a complete graph.  We have 

developed methods of finding all maximal complete graphs of a given neural 
network by a series of Matlab algorithms.  From them we can compute the 
maximal convex polytopes in each of the input classes.  

 
Furthermore, having found a maximal complete graph, we seek to enlarge it 

beyond the known exemplar configuration and thus generate a larger portion of 
input space as well as an improved approximation of the class boundary.  We 
begin by finding all maximal complete graphs in a given neural network for a 
given input class.  The graph to be enlarged is the one having greatest average 
edge length.  We choose average edge length for two reasons.  First, we are able to 
single out the graph with the greatest dispersion of vertices as measured by overall 
edge girth, and second, we ensure that all edges play a role in the graph selection, 
especially those edges internal to the convex polytope.  Because vertices internal 
to the convex polytope contribute to a larger average edge length value, we select 
the complete graph that is most likely to produce a convex polytope belonging to 
the same class.   



 
 

 
We then select one edge e=(xi,xj) from all of the edges in this graph and extend it 

at one endpoint xi while preserving the completeness nature of the resulting graph.   
That is, the edge is stretched as far as possible as long as the remaining vertices 
and the expanded vertex remain a complete graph. The edge choice, e, is made as 
follows: for each vertex x in G, we locate the closest exemplar y in the other class.  
Then, we locate the point on segment xy that belongs to the boundary, from which 
we determine the normal vector nxy.  Next, we let d = Σnxy/m. (Thus, d represents 
the average normal direction from the boundary to the graph.)  Finally, we choose 
the edge e having the largest projection onto d. 

 

This approach extends a normal vector technique discussed in Lee and 
Landgrebe, 1997.   
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