Evaluation of Neural Networks for
Automatic Target Recognition

K. Wojtek Przytula
Hughes Research Laboratories, RL69
3011 Malibu Cyn, Rd
Malibu, CA 90265
ph. (310) 317 5892, fax (310) 317 5484,
e-mail: wojtek@msmail4.hac.com

Don Thompson

Pepperdine University
Department of Mathematics
Malibu, CA 90263
ph. (310) 456 4831, fax (310) 456 4785,
e-mail: thompson @pepperdine.edu

Abstract—In automatic target recognition
we often face a problem in having to train a
large neural network upon a very limited
data set. This paper presents methods
designed to analyze trained networks. The
methods allow us to investigate how the
network makes its decisions as well as its
generalization properties. The methods
interact with each other and are intended to
be used as a complete set. They use
techniques of sensitivity analysis, linear
algebra, and rule extraction. They have
been coded in Matlab as a toolbox and
tested on a large number of real networks.

TABLE OF CONTENTS

INTRODUCTION
SENSITIVITY ANALYSIS
ALGEBRAIC TECHNIQUES
RULE EXTRACTION
CONCLUSIONS

N

1. INTRODUCTION

One of the most important problems in
aerospace, and one of the hardest to solve,

is the problem of Automatic Target
Recognition (ATR). The targets include air,
land, and sea objects, which are classified
using signals from a whole range of
sensors such as radar (including SAR),
infrared (e.g. ‘FLIR’), vision, sonar, etc..
Recently, neural network classifiers have
been proposed for ATR with significant
success. However, effective application of
neural networks to most types of ATR is
hampered by a lack of large representative
data bases, due to the very high cost of data
acquisition. Moreover, the data are often
very complex and difficult to classify.
Furthermore, the extraction of features
from such data leads to large feature
vectors, which in turn requires a large sized
input layer for the neural network. So
arises the problem of training an
architecturally large network using a small
set of examples. Subsequently, network
reliability is placed in jeopardy, forcing us
to look inside the network, which
throughout the training and testing phase
has essentially been treated as a “black
box.”

Most of the efforts in the neural network
research community have been concentrated
on development of proper network design
techniques. These help to select the right
training algorithm, to define the
appropriate topology of the network, and to
provide best performance both for training
and testing sets. We assume that the design
and training of the network have already
been completed. We propose a set of
techniques for evaluation of the trained
network. The techniques are applicable to
all multilayer networks without feedback.
Throughout the paper we use terminology
most suitable for neural network classifiers,
e.g.: class boundary and class
generalization. However the techniques
of the paper suit the analysis of networks
for other applications as well.

Our goal is to find those characteristics of a
trained network which would provide a
clear and compact interpretation of the
network behavior. In particular we are
interested in learning how individual inputs
affect the output of the network (e.g.:
which are decisive in classifying inputs),
how neural network separates input space
into classes (i.e.: what is the shape of the
class boundaries and the network behavior
in their vicinity), and how well the network
generalizes beyond the exemplars it was
trained on. In order to accomplish this goal
we apply an integrated approach based on
three types of methods: sensitivity analysis,
algebraic methods, and rule extraction.

In sensitivity analysis we view the neural
network as a multivariate vector function
y = N(W,x), which maps input vector
x € X, X input space , intoye Y, Y
output space . The function is parametrized
by the weight matrix W and is fully defined
once the network is trained. In ATR
applications, as in most other applications,
a high dimensionality of the input space

makes a simplistic tabulation approach
useless for characterizing the function. We
have therefore developed a range of
techniques, which, when used together,
provide a good insight into the sensitivity
of the function to individual inputs, to
behavior near the class boundaries in input
space and to generalization properties.
Utility of the sensitivity techniques can be
enhanced by a preparatory analysis of the
input space. Such an analysis would
combine a priori information about the
input space resulting from the specifics of
the problem (e.g.: type of sensor,
preprocessing used, application scenario)
with computation of input data
distributions, clusters, centroids, and data
outliers. However, the discussion of the
input space analysis is beyond the scope of
this paper.

There are several results known in the
literature which are related to some of the
sensitivity techniques discussed in this
paper, [1], [2]. However, their fragmentary
nature impairs their effectiveness in
network analysis. Our experience with a
large number of real networks has shown
that a broader range of techniques
combined with a coherent methodology is
needed for analysis of networks.

The second class of methods - the linear
algebraic methods - complements the
results obtained by sensitivity analysis to
improve understanding of the shape of
classification boundaries and the
generalization properties of the network.
The linear methods limit our investigation
to a single layer of a neural network,
because the entire network is highly
nonlinear. In particular we analyze the
matrix of weights between input and
hidden neurons and the covariance matrix
of the hidden layer activations. Other
authors looked at these matrices in the

context of network training . In [3] and [4]
a method was proposed for reconfiguration
of a network to reduce the training
requirements. In [5] a criterion is
presented which helps dstermine when to
stop the training.

Our third class of methods encompasses
techniques for extraction of rules from
trained networks. These are rules of the
type: if input vector x belongs to a given
region R then it is & member of a specific
class (i.e.: the outnut of the netwerk will
indicate membership of that class) The
rules approximatz the actuel class regions,
and thus provide information about the
class boundaries, as acquired by the trained
network. We are vsing multi-dimensional
intervals ‘as the rule regions R, similar to
the process outlined in [6], however our
rule generation ealgorithms are novel
Alternative approaches o rule extraction
are discussed in [7].

The varicus techniques constituting these
three classes of methods have been
captured in the form ef algorithms in an
integrated software toolbox. The toolbox
has been ccded 1n Matlab and tested on a
large number of retworks. It has proved
very effective for analysis of trained
networks, providing the user a good
understanding of the interne! worling of
the “black box” representing the neural
networks in training. .

This paper contains five chapters. Chapter
1 consists of this introduction, following
which we present sensitivity analysis
methods in Chapter 2. Chapter 3 covers
algebraic methods , after which we
consider rule extraction techniques in
Chapter 4. The paper ends with
conclusions in Chapter 5.

2.0 SENSITIVITY ANALYSIS
2.1 Approach

A trained neural network can be viewed as
a multivariate vector function:

y= N(W.x) (1)

where x € X is and input vector from

input space X, y € Y is an output vector
from output space Y, W is a matrix of
parameters (weight matrix). In a typical
ATR application, as in most other
applications, the input space has between
5 to 50 dimencions. The output space is
often also multi-dimensional. All the
methods presented in the sequel apply to
networks with multiple outputs, however
for simplicity of presentation we will
assume that there is only one output. We
will also assume that the inputs and the
outputs are normalized to the closed interval
[0,1]. Value 1 on the output is reached for
one class of inputs (high-value class) and
value O for the other class (the low-value
class). The output value 0.5 is assumed to
be the threshold value separating the two

- classes, and is therefore obtained for all the

points in the input space that represent the
class boundaries . These are the boundaries
acquired by the network in the process of
training. They approximate the actual
boundaries in the input space. The quality
of this approximation depends on the
choice of network topology, network
training and how well the exemplars used
in training represent the reality of the data.

We are interested " in the input-output
relation of the function as it affects the
classification. In particular we would like to
know which inputs matter most in the
classification decision, what is the function
like near the class boundaries, and what can
we say about expected generalization
properties. The network function is fully

defined once the training is completed.
Thus we can easily obtain the value of
function output and know its classification
for any input. Nevertheless, simple
tabulation of the function, even in limited
subregions of the input domain, are hard to
interpret because of high dimensionality of
the input space. The problem is to extract
easy-to-interpret information about the
function , and thereby gain insight into its
important characteristics.

It is desirable to precede the analysis of the
network function N with a good
understanding of the structure of the input
space. From the idiosyncrasies of the
problem (e.g.: type of sensor used,
preprocessing of sensor input, data
acquisition scenario) we can obtain some
information about the input space. This
information needs to be augmented by
statistical analysis of the input data,
particularly with clustering characteristics
such as centroids and outliers. We will not
elaborate on data analysis techniques.
However, it is important to remember that
this analysis helps significantly in our main
goal, network analysis. During the learning
phase, the network acquires the structure of
the data from the exemplars. By comparing
what we see in the data and what the
network has learned, we can better judge
and understand the network.

2.2 Methods

In this section we describe the specific
methods of extracting information about the
network function N, characterized by the
following: the dependence of network
classification decisions on the individual
inputs, the behavior of the function near the
class boundaries, and the generalization
properties of the network. The network
function is a very complex and highly
nonlinear function defined over a region of
high dimensionality. Any single method

provides only a very limited insight into the
function. It takes a combination of the
methods presented in this section with the
algebraic and rule extraction methods
described in the two following chapters to
get a satisfactory picture.

The network function is obtained as a result
of training, which is forcing it to be equal
to 1 for one class of exemplars and to O for
the other class. Thus the function takes on
one of the two values 1 or O over most of
its domain. The rest of the domain is
providing space for output transition from 1
to 0. In it lie the boundaries separating the
two classes. The behavior of the function
in the vicinity of exemplars and in the
boundary region tells us much about the
generalization properties of the network.

Method 1

In this method we characterize the function
along selected straight lines in its domain .
This is a 1-D characterization of the
multi-dimensional function. However, by
selecting important points and running
multiple straight lines through the points
(e.g.: running through the exemplars lines
parallel to all the coordinate axes) we obtain
information about behavior of the function
in some vicinity of the points. The 1-D
information may also be useful for
well-selected straight lines or their
segments (e.g.: lines connecting centroids
of two classes or important points near the
boundary of the classes and lines between
selected class outliers).

We will describe the shape of the function
along a given straight line using three
parameters: cumulative change of output
value (sum of absolute values of
increments) which we call swing,
maximal slope, and the change of sign of
the slope. These three parameters are quite
informative because the output of the

network function is essentially limited to
two plateaus at 1 and O and occasional
transitions between them.

The result of computation of the three
parameters along the straight lines, parallel
to all the coordinates and running through
a given exemplar is shown in Figure 1.
Low values of slope and swing indicate that
there is no class boundary along these
directions and the exemplar probably does
not lie near a class boundary. Very high
values of slope indicate a steep class
transition, whereas high values of swing
point to multiple boundaries along that
direction.

34+ *
+
i !
1+ + 0)
o
o
5 ©° o @ ..
1 2 3 4 5
+ Swing o slope e sign
Figure 1. Neural Network Function Shape
Characteristics

Figure 1 shows an example of results of
Method 1 (swing, maximal slope, and
change of sign) for a single exemplar in a
five-dimensional input space.

We can compute the parameters for all the
exemplars and average them to see if any
patterns emerge. For example, higher
values of swing for several coordinates
may indicate that the inputs represented by
these coordinates are more important in
class separation than other inputs. If for
most of the exemplars the slopes are steep

and there are multiple boundaries along
multiple directions, then the network may
be overtrained and may not be able to
generalize well.

The exemplars which have the highest
values of slopes and swings as well as
those points which are identified by input
data analysis (e.g.: centroids and outliers)
are good starting points for analysis by
means of Method 2 .

Method 2

In this method we look at 1-D and 2-D
plots of the network functions. We select a
point in the input space and one or two
coordinates and plot the output of the
network as a function of the selected
coordinates. The tabulations make sense
only for well-selected points and
coordinates. The choice can be best made
using the input data analysis and the results
of the Method 1. The information
provided by the tabulations is very useful in
determining the shape of the function near
class boundaries. Each of the Figures 2(a),
2(b), and 2(c) depict a 1-D plot of a neural
network output as a function of one input
coordinate’s variation. Thus, all inputs but
one are held fixed, allowing us to observe
the networks response to isolated variation
in the input space. Smooth and gradual
transitions between flat plateaus are
characteristic of well trained and well
generalizing functions , see Figure 2(a).

0.5 4

0.5 1
Figure 2(a).

Figure 2(a). 1-D Network Output
Well Trained and Well Generalizing
Network
“Hesitant” transitions from uneven plateaus

signify incompletely trained networks, see
Figure 2(b).

05 L

0.5 1
Figure 2(b). 1-D Network Output
Incompletely Trained Network

Very sharp, multiple transitions signify an
overtrained network with poor
generalization, see Figure 2(c).

05 +

0.5 1
Figure 2(c). 1-D Network Output
Overtrained and Poorly Generalizing

Network

In drawing conclusions about network
characteristics from the 1-D plots, one
needs to keep in mind that they cover only
a very small part of the total volume of the
feasible input region.

Thus, we must choose very carefully the
parts of the region that need to be plotted
and then try to confirm our conclusions by
means of other methods.

Method 3

In order to get a more complete picture of a
function in the vicinity of a selected input
point we use a Monte Carlo test of class
membership. In this test we sample the
function around a given point and produce
class membership of the sample points.
This method yields information on the
distance of the point to the nearest class
boundary and on the shape of the fragment
of the boundary closest to it. By using
dense sampling we can obtain detailed
information about the function near
selected points (e.g. outliers etc.), or, with
coarser sampling applied to a large number
of points, we can draw conclusions about

the generalization properties of the entire
network.

3.0 ALGEBRAIC TECHNIQUES
3.1. Approach

The third class of methods of neural
network analysis is based on techniques of
linear algebra. These methods provide us
with characterization of the neural network
in respect to class separation and
generalization properties. Neural network
is highly nonlinear and in order to use
linear techniques we have to limit our
analysis to one layer of the network. In
particular we will analyze a matrix W | of
weights between input and hidden
neurons and a covariance matrix S of the
hidden layer activations .

The algebraic methods support the
information obtained by sensitivity analysis
regarding the generalization properties of
the network For example , if the
sensitivity analysis indicates presence of
very complex class boundary, such that
most of the exemplars lie near it and that
most of them are surrounded by only a
small region of the same class, then we
may have a case of overfitting as a result of
excessive number of neurons in the hidden
layer. We can verify it by computing the
effective rank of matrix W, or of covariance
matrix S. The following two methods
accomplish that task.

3.2 Methods
Method 1

The following equation shows computation
performed by the hidden layer of the neural

network:
Y, =f(W*X) (2)

where X, is the input matrix, which
columns are n-dimensional exemplars,

matrix Y, 1is the matrix of hidden layer
outputs, which m-dimensional columns are
activations produced by hidden layer for
each of the exemplars, and W, is an m x n
matrix of weights between the input and
hidden layer . Most of the networks used in
ATR have a smaller hidden layer than the
input layer i.e. m < n. If W, is rank
deficient i.e. rank(W,) < m , then the
outputs produced by the hidden layer will
be linearly dependent. Thus some of the
neurons are redundant.

We will determine the rank of W, by means
of its singular value decomposition, shown
below:

W,=UXV 3)

where U and V are orthogonal and }; is an
m X n diagonal matrix with m singular
values on the diagonal sorted from the
largest to the smallest. The number of
significant singular values will determine
the effective rank of the matrix.

We need to determine how many of the
singular values are significant That is, we
need to set a threshold value, below which
the singular values will be considered
insignificant. If we keep k singular values
and set to zero the remaining m-k values,
then the right-hand side of equation 3 will
provide the best (according to Frobenius
norm) approximation of W, of rank k. This
leads us to the method of selecting the
threshold value. We need to compute the
Frobenius norm of increment matrix
AW, . This increment reflects the minimal
resolution in weights computations caused
by the limited accuracy of the arithmetic
and by the rate of weight update used in
the training algorithm. Figure 3 shows an
example of singular values and the
threshold.

40T
30]
20 +

10] ok

F
+

1 2 3 4 5
Figure 3. Sorted singular values and the
threshold for a network with five hidden

neurons and effective rank of 3.

Method 2

This method provides alternative method of
finding redundancies in the hidden layer.
We compute a covariance matrix S of the
activation of the hidden layer:

S =cov(W,*X)) 4)

where notation is as in equation (1). The
matrix S 1S square and symmetric by
definition and therefore has real
eigenvalues. We perform an eigenvalue
decomposition of matrix S:

S =QEQ’ &)

where Q is orthogonal and E is a diagonal
matrix of real eigenvalues. We use the
absolute values of the eigenvalues to
determine the number of significant
eigenvalues and thus the rank of matrix S.
Using reasoning very similar to that of
Method 1 we can find any redundancy in
the hidden layer. This method supports the
results obtained using Method 1. If the rank
obtained by this method is smaller than that
of Method 1, then it indicates that there are
linear dependencies in the input data.

4.0 RULE EXTRACTION
4.1 Approach

This class of methods for analysis of neural
networks is based on extraction of “if-then”
rules from trained neural networks. We
accomplish this by means of a method for
determining the outcome of an existing
rule, which is then linked with two rule
extraction algorithms providing successful
ways of building rules from training
exemplars.

All of our rules will be based on network
behavior over rectangular regions.
Throughout this paper, we assume that all
input coordinates lie in the unit interval. By
a rectangular region R, we mean a set of the
form:

R={x:x €[oy,
O<o;<B;< 1, i=l..n}. (6)

Rectangular regions serve as input to the
network at the input layer. If we let such
sets propagate through the several layers of
the network, we will refer to N(R) as their
output in the final layer.

For a given output neuron, we are
mnterested in assuring that the output
belongs in a given class (e.g.: high or low
output). Hence, we ultimately wish to
construct regions R such that

N(R) ¢ [0,0.5), or
N(R) c (0.5,1]. (7

Therefore, an “if-then” rule for a multiple
layer network is simply a statement of the
form:

“if x € R, then N(x) yields high output
(i.e. 1. (05, LTy

or

“If x €(R, U R,), then N(x) yields low
output (i.e. in [0,0.5))”.

The problem, of course, is that we can
easily specify what output behavior we
wish for our network, but we cannot so
easily determine those sets R which yield
that behavior.

How are we to go about constructing
suitable input regions R?

One natural approach is to begin with the
known behavior of our trained network. In
other words, we can look to the training set
of exemplars, each of whose output
behavior is known. This collection of
vectors and their outputs can be viewed as
the set of seeds for “growing” input regions
R.

Furthermore, we wish to build our input
regions with maximum volume, so that the
resulting rules will generate a compact
approximation to the underlying implicit
rule base being employed by the neural
network.

By way of illustration, suppose we have a
neural network of one output neuron and
two input neurons, which divides all inputs
into one of two classes separated by some
curve. See Figure 4.

Low Output
| Class

High Output e
|
Class °
. ®
Exemplars: Low Qutput High Output

Figure 4. Typical 2-D Input Space

Figure 4 depicts a typical scenario with two
inputs giving rise to a single output which
takes on values in one of two classes,
separated by a single curve boundary.

The ideal rule set for this network would
specify the precise boundaries of each
output region, particularly the functional
definition of the curve that partitions the
output space. The price of such precision,
however, can be an unmanageable
collection of rules which amount to a
recitation of the coordinates of “all” of the
points on the surface that separates the
output classes. That is, if we demand to
know the precise nature of the two output
regions, we may end up with an impractical
point by point representation of their
boundary. Instead, our methods generate
large rectangular regions whose union
approximates the shape of these output
regions. We opt for a small number of
large rules rather than an exhaustive list of
microscopic rules. See Figure 5.

il Low Output

\\\ < Class

\\\\\\E\\ﬁ\

/,295‘/}5”/’

8] Low Output Rules [

=
’7///

rs §

‘*‘t:\

e

m

k

High
Output
Class

High Output Rules f<<-s

Figure 5. 2-D Input Space
with Rectangular Rules

Figure 5 shows several large rectangular
rules each of which contains one of the
given exemplars, and whose union
approximates each output class.

The techniques outlined in this chapter are
applicable to arbitrary multiple layer neural
networks. However, for discussion
purposes, we will concentrate on trained
neural networks having one hidden layer
and one output neuron. The corresponding
weight and bias matrices joining the input
layer to the hidden layer are denoted by W,
b,; while the weight and bias matrices
joining the hidden and output layers will be
denoted by W,, b,., We assume the
activation function f(x) to be monotonic.
For input vector x, the corresponding
network y is given by:

y =N(x) = f(b, + ZW, f(b, + ZW,x)). (8)

In effect, the network acts as a map from
the n-dimensional cube into the unit
interval.

4.2 METHODS

The following theorem is instrumental in
establishing that in any multiple layer
network, N(R) is a single interval.

Theorem 1

Consider the connection between two
consecutive layers of an arbitrary multiple
layer neural network. Suppose the first
layer has n neurons, connected by weight
and bias matrices W and b to a given single
neuron in the second layer. Let the first
layer provide input to the second layer in

the form of the region R = {x: x; €[o, B;l,
OSC(,]S Bl—<- 1, 1=1n}

Define ¢; = o; if W; > 0, else B, i = 1..n,
andd, =B,if W, >0, else o, i = 1..n.

Then, as we propagate R forward through
the network, the corresponding output of
the neuron in the second layer is the interval

[f(b + Wc), f(b + Wd)].

The proof of this theorem proceeds by
induction on n, the dimension of the input
space. For the sake of brevity of
presentation, however, we omit the details
of that proof.

By repeatedly applying the “forward
propagation” approach of Theorem 1 to a
multiple layer network, we see routinely
that the network output N(R) resulting from
a closed rectangular input region R is a
single, closed interval. The following
example illustrates the process.

Demonstration

Consider a simple three layer network
having three input neurons, two hidden
layer neurons, and one output neuron with
the indicated weights and biases. See
Figure 6.

Assume also that we employ a
log-sigmoidal activation function

f(x) = 1/(1 + exp(-x)). ©))

85

0.6

Figure 6. Simple Trained Neural Network

Let the rectangular input region, R, for this
network be [0, 0.3] x [0.1,0.8] x
[0.6,1.0].

Theorem 1 tells us that when we forward
propagate R from the input layer to the
hidden layer, the output in the hidden layer
will be

[0.574, 0.761] x [0.455, 0.565].

It we again use Theorem 1 to push this

rectangle forward from the hidden layer to
the single output neuron, we obtain

N(R) = [0.588, 0.699] as the final output
of the network.

Growth Algorithms

We will now present two algorithms for
creating regions R in [0,1]" such that
N(R) < (0.5,1] or N(R) c [0,0.5).

Our basic approach is to take an exemplar
vector X for which N(x) € (0.5,1], (say),

and then “grow” a rectangular region R
around X in such a way that x € R and

N(R) c (0.5, 1].

We will examine two methods for growing
regions around exemplars. They differ in
the following respect: the first algorithm is
based on growing a rule as a function of the
local behavior of the derivative of the
output with respect to individual input
neurons. The second algorithm is based on
growth in proportion to minimum and
maximum boundaries of the rule.

Algorithm 1

Suppose we have an exemplar x whose
output is in a known class. The simplest
technique for “growing” a rectangular
region around X, which also produces
outputs in the same class, is to iteratively
expand subintervals about each coordinate
of x, symmetrically and uniformly.

We begin with a single exemplar, of type
“high output”, say, about which we
iteratively build a rule by generating
increasingly larger input intervals centered
about the coordinates of the exemplar.
This is done as follows: We select a
growth increment, A, which is then
repeatedly applied in both directions about
each coordinate of the exemplar, as long as
the corresponding output interval of the

resulting region lies above the threshold
0.5.

Rule Growth is controlled by three
parameters:
[} a maximum rate, M, at which

output interval endpoints are allowed to
change as a function of input interval
change,
2) a maximum width, W, of each input
interval,

3) a minimum required distance or
buffer, D, between the output interval and
the 0.5 threshold.

Here are the steps employed in one iteration
of Algorithm 1:

1) For each coordinate, expand a
symmetric interval about the exemplar

coordinate value by the amount A in each
direction.

2) Stop the growth on a given
coordinate when one of the following
conditions holds:

a) growth rate exceeds M, or

b) this coordinate’s interval
width exceeds W, or

c) the distance between the
output interval and the threshold
value of 0.5 is less than the D.

Steps 1 & 2 are repeated until there is no
coordinate whose growth may continue.

Demonstration

The idea is illustrated in Figure 7(a) - (c).

Low Output
Class

High Output o

Exemplar

High Output
Class

Figure 7(a). 2-D Input Space
with Single Exemplar

Figure 7(a) shows the beginning of our rule
growing process, a single exemplar whose
output is “high”. In effect, a single
exemplar already represents an initial rule,
R,.

As we perform one iteration of Algorithm
1, we see the resulting rule growth in
Figure 7(b) in the form of the rule R,.

Low Output
Class

Rule R1

High Output
Class

Figure 7(b). 2-D Input Space with Rule
Growth From One Iteration of Algorithm 1

In Figure 7(c), things get interesting. After
many iterations of our algorithm, we
begin to approach the curve that separates
the classes. Because the boundary is closer
horizontally than vertically, our rule R, has
slowed its horizontal growth, favoring
continued vertical growth. This is typical
of the growth behavior of intervals using
this method, since we monitor the rate of
growth as well as the distance to the output
boundary.

Low Output
Class

Rule Ry

High Output
Class

Figure 7(c). 2-D Input space with Rule
Growth Terminating After K Iterations of
Algorithm 1

Discussion

The rate parameter M is an essential feature
of this algorithm. It controls the maximum
allowable value of the partial derivative of
the output interval width as a function of
each coordinate endpoint value. As the
analysis in Chapter 2 of this paper revealed,
there can be vastly different sensitivity of
the output to the different coordinates of the
input. This growth algorithm takes that
sensitivity into account in order that any
individual interval does not grow too
rapidly and thus jeopardize the overall rule
growth.

Next, the width parameter W is a means of
assuring that all intervals have nearly
uniform width, thus preventing one or
more intervals from dominating the overall
growth of the rule to the exclusion of the
growth of other coordinate intervals.

Finally, the threshold buffer parameter D
allows the user of the algorithm to control
interval growth so that the output interval is
maintained at any desired minimum

distance from the 0.5 threshold. As the use
of the algorithm proceeds, one typically
applies the algorithm with increasingly
smaller values of the parameter D, after
having observed the effect of the other two
parameters, M and W,

Overall, this rule is most useful when slow
careful growth is required. This can be
seen happening when the slope, as
discussed in Method 1, Chapter 2, is
extremely sensitive to slight changes in
input coordinates. Slow rule growth is also
required when the exemplar’s output is
very close to the 0.5 threshold. Finally,
careful rule growth is essential in those
cases when the boundary between high and
low output exemplars is highly non-linear,
so that subtle movements in individual
coordinates move one violently from one
domain set to another.

Algorithm 2

The next algorithm uses the minimum and
maximum values of each exemplar
coordinate to grow the rule. By minimum
value, we mean the following: Suppose x
= (X, Xy ..., X, is a “high output”
exemplar, then the minimum value, A, , for
coordinate i of x is given by

A, = min (o) such that N({x , x,, ...
[o,%.], X,pps -oor X, 1) < (0.5, 1].

s Xjgps
i+1
The maximum value, B,, for coordinate i of
X is given by

B, = max () such that N({x ,, x,, ...,
%l B X, B e S 11

For example, if N(x) < (0.5,1], A, is the
smallest value of coordinate i of x such
that if we propagate R = {[x,, x,1, [X,, X,],
ooy Kigs Xigds [As %15 [Xiyps X iqds oo [,
x,]} through the network we still obtain

N(R) < (0.5,1]. Note that R is thus a valid
rule, but it only reflects growth of one end
of one interval about one exemplar
coordinate.

If we calculate all such minima and
maxima, we obtain the region R, = [A,
Bl x [A,, B)] x ... x[A, B,]. This
region represents the absolutely largest
subset of [0,1]" for which N(R) is
theoretically in the same class as x. It
represents the largest rule one could hope to
grow around X, one coordinate at a time.

It should be noted, however, that, in
practice, N(R,.ums) 1S not even close to
being in bounds. That is, usually
N(R,.omi) has endpoints on opposite sides
of 0.5. Thus, R,,u.. does not represent a
viable rule. However, R, .., is useful in
that it represents a theoretical extremum
toward which interval growth will be aimed
in this algorithm.

Let us now consider how we may calculate
R,.omin ONCe the overall growth has gotten
under way. In general, as the algorithm
proceeds and the growth has achieved a
given viable rule, say,
I=[r,s]x[r,s]x..x[,s] we
must re-evaluate the boundaries of R, i
This is done as follows: for each endpoint
of I, we now hold all other subinterval
endpoints of I fixed and then take our
selected endpoint out to its minimum (for
an 1;) or maximum (for an s,) value while
insisting that the resulting region
corresponds to a rule in the same class as
the exemplar.

What remains, then, is some explanation of
how I is found. The details are given
below.

This algorithm grows its intervals by taking
steps in proportion to maximum available
room for growth.

Suppose the rule built thus far by this
algorithm is I = [r, 5,] X [1,, 8,] x ... X [r,,
8:1.

We find R s =[A,, Bl x[A,,B)] x ...
x [A,, B,]. based on endpoint growth of
rule I as described above.

A single step of Algorithm 2 involves the
following:

The next rule generated by this
algorithm is then:

J=[u, v,]x[u,v,] x..x[u,v],

where, for each i=1..n, we have
r, -u=k(, - A)
v, -8, =k(B,-s),

where the constant k (0 < k < 1) is
chosen so that the resulting rule J will
still be valid (i.e.: k is chosen so that
N{) is still in the same class as the
exemplar x).

See Figure 8.

° g)r(!— é —P °
' ui : i vi :
Ai Xi sl vi Bi
Figure 8. Growth of a 1-D interval
according to Algorithm 2

In other words, we move from rule I to
rule J by stretching each endpoint by an
amount proportional to the distance
between the current rule I and the
min/max rule R

max/min*®

This method terminates when the total
growth gained by all intervals over the
previous iteration is considered to be
negligible.

Demonstration

For illustration, suppose we are given a
neural network having two input neurons.
See Figure 9.

As Algorithm 2 is applied, we begin with
the exemplar state again as in Figure 7(a).

From the exemplar vector, we generate the
extremum R ... depicted in Figure 9(a).

Low Output
Class

High OQutput
Class

Figure 9(a). 2-D Input Space
with First Maximal Rule.

Suppose the proportionality constant is
chosentobek = 1/2. Thus, our first rule
R, has half subintervals which are 1/2 of
the lengths of the half intervals of

R wmn, We see the resulting rule in Figure
9(b),

Low Output
Class

/

_

e
%
;& _
High Output
Class

R1 P2 Rmax/min &

Figure 9(b). 2-D Input Space with First
Maximal Rule and First Ordinary Rule.

Having created this first rule, we must
recalculate R ,,ymn - This is done by
holding each subinterval from rule R,
fixed, then, one by one, moving each
coordinate’s left and right endpoints
outward until the output threshold is
reached. Figure 9(c) shows the newly
calculated R

max/min®

Low Qutput
Class

.nr?r

b e

N

il e
Figure 9(c). 2-D Input Space with Second
Maximal Rule and First Ordinary Rule.

7
o 7

High Output
Class

Rmax/min (from R1)

At this point, we grow each coordinate
interval , say, with the same
proportionality constant k = 1/2, giving
rise to the rule R, in Figure 9(d).

Low Output
Class

High Output
Class
R1 R2 [5%] Rmawmin (from R1) gz

Figure 9(d). 2-D input space with
Second Maximal Rule and First
and Second Ordinary Rules.

Discussion

This algorithm takes careful note of the left
and right boundaries of each coordinate.
Its primary advantage is that it allows for
balanced growth to occur in those cases
where different coordinates have vastly
different growth potential, independent of
derivative behavior, but sensitive to growth
extrema.

In a comparison of the two algorithms, we
can see various comparative advantages.
For example, if the derivatives are flat, then
the first method is superior; whereas the
second method is better for those situations
when the derivative is oscillatory but the
boundaries are extreme.

Each of these techniques has been applied
by the authors on a number of networks,
yielding favorable and interesting results.

5.0 CONCLUSIONS

The paper addresses a problem of reliability
of networks trained on small data sets.
Users often hesitate to use these networks
in real life situations, relying only on their
performance on a small number of test
exemplars. It is therefore desirable to have
some understanding of internal workings of
a ftrained network. In particular, it is
important to know how the network makes
its classification decisions and what are its
generalization properties. The methods
presented in this paper aim at providing the
necessary additional information about the
network. They are to be used as a set in
which any individual method provides only
a partial picture but as an ensemble they
furnish significant insight . The methods
come from three different approaches
sensitivity analysis, linear algebraic, and
rule extraction. The methods have been
captured in a toolbox programmed in
Matlab and tested on a large number of real
networks. They proved very useful and
helped significantly in evaluation of trained
networks.

References

[1] TH Goh,.,
Extraction Using Neural Network Modeling and
Sensitivity Analysis,” Proc. IEEE Intl.
Conference on Neural Networks, Singapore, 18-21
Nov. 1991.

Francis Wong, “Semantic

Joint

[2] Sang-Hoon Oh, Youngjik Lee, “Sensitivity
Analysis of Single Hidden-Layer Neural Networks,”
IEEE Transactions on Neural Networks, Vol. 6,
NO. 4, 1005-1007, July 1995

[31 Y.H.Hu et al. “Structural Simplification of a
Feed-forward, Multi-layer Perceptron Artificial
Neural Network,” Proc. IEEE Intl. Conference on
Acoustics, Speech and Signal Processing 1991, pp.
1061-1064

[4] Quizhen Xue, Yu Hen Hu, Paul Milenkovic,
“Analyses of the Hidden Units of the Multi-layer
Perceptron and its Application in Acoustic-to-
Articulatory Mapping,” Proc. IEEE Intl.
Conference on Acoustics, Speech and Signal
Processing, 1990, pp. 869-872

[5] A.S. Weigend, D.E. Rumelhart, “The Effective
Dimension of the Space of Hidden Units,” Proc.
IEEE Intl. Joint Conference on Neural Networks,
Singapore, 18-21 Nov. 1991, vol. 3 pp. 2069-2074

[6] Sebastian Thrun, “Extracting Symbolic
Knowledge from Artificial Neural Networks,”
Advances in Neural Information

Systems, (NIPS) 1995.

Processing

[7] Peter Howes and Nigel Crook, “Rule
Extraction from Neural Networks,” Rules and
Networks, Proceedings of the Rule Extraction
From Trained Artificial Neural Networks
Workshop, AISB, University of Sussex, 96. R,
Andrews & J. Diederich (eds).

K. Wojtek Przytula is a Senior Member of
the Technical Staff in the Information
Science Laboratory of the Hughes Research
Laboratories. He has worked on research
projects at the Technical University of
Lodz, the Information Systems Laboratory
at Stanford University, and in the
Laboratory for Computer Science at the

Massachusetts Institute of Technology.
His industrial experience includes work
with Shell Oil Research Laboratories and
the Honeywell Technology Strategy
Center. His work at Hughes Research
Laboratories involves parallel computer
architectures and algorithms for signal
processing and neural networks, as well as
applications of signal processing, pattern
recognition, and neural networks in military
and commercial systems. He is a senior
member of IEEE, having earned the Ph.D.
in System Science from the University of
Minnesota.

Don Thompson is a Professor of
Mathematics whose research and teaching
interests cross several areas. Thompson
Joined the faculty of Pepperdine University
in 1979, immediately after completing his
Ph.D. in Mathematics at the University of
Arizona. His formal mathematical training
is in Algebraic Coding Theory with a
publication record that includes Graph
Theory and Combinatorial Algorithm
Design. Thompson teaches in the
Mathematics and Computer Science areas,
specializing in Probability Theory and
Artificial Intelligence. Furthermore,
Thompson teaches in Pepperdine’s Great
Books program, a five semester sequence
utilizing the shared inquiry method with
authors from Homer, Plato, Aristotle,
Virgil, and Euclid in the classic period to
Dostoevsky, Camus, Kierkegaard, Freud,
and Woolf in the nineteenth and twentieth
centuries.

